File size: 4,456 Bytes
e7a1876
 
 
 
 
66c91bd
 
 
 
883ce2d
e7a1876
 
 
 
 
 
 
 
 
 
 
 
d2a2733
 
e7a1876
4ddcb94
 
e7a1876
 
 
 
 
 
 
883ce2d
35a8c91
883ce2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a1876
d2a2733
883ce2d
 
 
e7a1876
 
 
 
 
 
 
 
 
 
4ddcb94
 
e7a1876
 
 
 
 
 
 
 
 
 
4ddcb94
 
 
 
 
 
 
 
e7a1876
 
 
 
 
 
 
66c91bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
- vandalism
- video-classification
- ucf-crime
- vandalism-dectection
- videomae
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucfcrime-full2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucfcrime-full2

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on the [UCF-CRIME](https://paperswithcode.com/dataset/ucf-crime)
dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5014
- Accuracy: 0.225

## Model description

More information needed

## Intended uses & limitations

Usage: 
```python
import av
import torch
import numpy as np

from transformers import AutoImageProcessor, VideoMAEForVideoClassification
from huggingface_hub import hf_hub_download

np.random.seed(0)


def read_video_pyav(container, indices):
    '''
    Decode the video with PyAV decoder.
    Args:
        container (`av.container.input.InputContainer`): PyAV container.
        indices (`List[int]`): List of frame indices to decode.
    Returns:
        result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
    '''
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])


def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
    '''
    Sample a given number of frame indices from the video.
    Args:
        clip_len (`int`): Total number of frames to sample.
        frame_sample_rate (`int`): Sample every n-th frame.
        seg_len (`int`): Maximum allowed index of sample's last frame.
    Returns:
        indices (`List[int]`): List of sampled frame indices
    '''
    converted_len = int(clip_len * frame_sample_rate)
    end_idx = np.random.randint(converted_len, seg_len)
    start_idx = end_idx - converted_len
    indices = np.linspace(start_idx, end_idx, num=clip_len)
    indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
    return indices


# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(
    repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
)
container = av.open(file_path)

# sample 16 frames
indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container, indices)

image_processor = AutoImageProcessor.from_pretrained("videomae-base-finetuned-ucfcrime-full")
model = VideoMAEForVideoClassification.from_pretrained("videomae-base-finetuned-ucfcrime-full")

inputs = image_processor(list(video), return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits

# model predicts one of the 13 ucf-crime classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```
## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 700

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.5836        | 0.13  | 88   | 2.4944          | 0.2080   |
| 2.3212        | 1.13  | 176  | 2.5855          | 0.1773   |
| 2.2333        | 2.13  | 264  | 2.6270          | 0.1046   |
| 1.985         | 3.13  | 352  | 2.4058          | 0.2109   |
| 2.194         | 4.13  | 440  | 2.3654          | 0.2235   |
| 1.9796        | 5.13  | 528  | 2.2609          | 0.2235   |
| 1.8786        | 6.13  | 616  | 2.2725          | 0.2341   |
| 1.71          | 7.12  | 700  | 2.2228          | 0.2226   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2