File size: 4,627 Bytes
a69b27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba801af
a69b27b
 
 
d691d0f
a69b27b
 
6c8024b
a69b27b
4b34232
a69b27b
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8024b
a69b27b
 
 
 
 
 
 
 
 
83225e8
a69b27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8024b
a69b27b
 
6c8024b
 
a69b27b
 
 
 
 
 
 
83225e8
a69b27b
3b222ca
83225e8
a69b27b
83225e8
 
 
 
a69b27b
 
83225e8
a69b27b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d691d0f
a69b27b
 
 
d691d0f
a69b27b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
language: uk
dataset: common_voice
metrics: wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Ukrainian XLSR Wav2Vec2 Large 53
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice uk
      type: common_voice
      args: uk
    metrics:
       - name: Test WER
         type: wer
         value: 29.89
---

# Wav2Vec2-Large-XLSR-53-Ukrainian

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) and sample of [M-AILABS Ukrainian Corpus](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) datasets.

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "uk", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")

# Preprocessing the datasets.
# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

```

## Evaluation

The model can be evaluated as follows on the Ukrainian test data of Common Voice.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "uk", split="test")

wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model.to("cuda")

chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“']
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays and normalize charecters
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence'])
    batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip()
    batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence'])
    batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence'])
    batch['sentence'] = re.sub('  ', ' ', batch['sentence'])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

```

**Test Result**: 29.89

## Training

The Common Voice `train`, `validation` and the M-AILABS Ukrainian corpus.

The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.