File size: 1,964 Bytes
ddc30dd 76daf8f ddc30dd 76daf8f ddc30dd f4084f8 ddc30dd 76daf8f ddc30dd f4084f8 ddc30dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-pt-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# summarization-pt-0
This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4509
- Rouge1: 0.6893
- Rouge2: 0.0
- Rougel: 0.6872
- Rougelsum: 0.6862
- Gen Len: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.1762 | 1.0 | 892 | 2.2190 | 0.7537 | 0.0 | 0.7549 | 0.7532 | 1.0 |
| 2.6396 | 2.0 | 1784 | 1.8945 | 0.6963 | 0.0 | 0.6949 | 0.6934 | 1.0 |
| 2.3694 | 3.0 | 2676 | 1.6951 | 0.6912 | 0.0 | 0.6912 | 0.6889 | 1.0 |
| 2.1722 | 4.0 | 3568 | 1.5595 | 0.6883 | 0.0 | 0.6851 | 0.6883 | 1.0 |
| 2.0114 | 5.0 | 4460 | 1.4509 | 0.6893 | 0.0 | 0.6872 | 0.6862 | 1.0 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|