File size: 1,964 Bytes
ddc30dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76daf8f
 
ddc30dd
76daf8f
 
ddc30dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4084f8
 
ddc30dd
 
 
 
 
 
 
 
 
 
76daf8f
 
 
 
 
ddc30dd
 
 
 
 
f4084f8
 
ddc30dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: summarization-pt-0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# summarization-pt-0

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4509
- Rouge1: 0.6893
- Rouge2: 0.0
- Rougel: 0.6872
- Rougelsum: 0.6862
- Gen Len: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.1762        | 1.0   | 892  | 2.2190          | 0.7537 | 0.0    | 0.7549 | 0.7532    | 1.0     |
| 2.6396        | 2.0   | 1784 | 1.8945          | 0.6963 | 0.0    | 0.6949 | 0.6934    | 1.0     |
| 2.3694        | 3.0   | 2676 | 1.6951          | 0.6912 | 0.0    | 0.6912 | 0.6889    | 1.0     |
| 2.1722        | 4.0   | 3568 | 1.5595          | 0.6883 | 0.0    | 0.6851 | 0.6883    | 1.0     |
| 2.0114        | 5.0   | 4460 | 1.4509          | 0.6893 | 0.0    | 0.6872 | 0.6862    | 1.0     |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1