metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-unipelt
results: []
sentiment-unipelt
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2811
- Accuracy: 0.9023
- Precision: 0.8773
- Recall: 0.8933
- F1: 0.8846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5459 | 1.0 | 122 | 0.4639 | 0.7469 | 0.6922 | 0.6459 | 0.6573 |
0.4335 | 2.0 | 244 | 0.4108 | 0.7845 | 0.7552 | 0.7975 | 0.7634 |
0.3375 | 3.0 | 366 | 0.3283 | 0.8596 | 0.8347 | 0.8207 | 0.8272 |
0.2801 | 4.0 | 488 | 0.3202 | 0.8596 | 0.8278 | 0.8432 | 0.8347 |
0.2572 | 5.0 | 610 | 0.3109 | 0.8747 | 0.8438 | 0.8713 | 0.8550 |
0.2339 | 6.0 | 732 | 0.3074 | 0.8672 | 0.8353 | 0.8660 | 0.8473 |
0.2249 | 7.0 | 854 | 0.2915 | 0.8672 | 0.8353 | 0.8660 | 0.8473 |
0.193 | 8.0 | 976 | 0.2540 | 0.8972 | 0.8781 | 0.8723 | 0.8751 |
0.1899 | 9.0 | 1098 | 0.2636 | 0.8822 | 0.8526 | 0.8767 | 0.8628 |
0.1801 | 10.0 | 1220 | 0.2371 | 0.9073 | 0.8840 | 0.8969 | 0.8900 |
0.157 | 11.0 | 1342 | 0.2567 | 0.8997 | 0.8733 | 0.8941 | 0.8825 |
0.1553 | 12.0 | 1464 | 0.2593 | 0.8972 | 0.8708 | 0.8898 | 0.8793 |
0.1381 | 13.0 | 1586 | 0.2490 | 0.9173 | 0.9010 | 0.8990 | 0.9000 |
0.1476 | 14.0 | 1708 | 0.2701 | 0.8997 | 0.8740 | 0.8916 | 0.8819 |
0.1447 | 15.0 | 1830 | 0.2611 | 0.9123 | 0.8899 | 0.9029 | 0.8960 |
0.1336 | 16.0 | 1952 | 0.3100 | 0.8997 | 0.8718 | 0.9016 | 0.8840 |
0.1192 | 17.0 | 2074 | 0.2935 | 0.8972 | 0.8696 | 0.8948 | 0.8803 |
0.1247 | 18.0 | 2196 | 0.2869 | 0.9023 | 0.8765 | 0.8958 | 0.8851 |
0.117 | 19.0 | 2318 | 0.2761 | 0.9023 | 0.8773 | 0.8933 | 0.8846 |
0.1092 | 20.0 | 2440 | 0.2811 | 0.9023 | 0.8773 | 0.8933 | 0.8846 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2