sentiment-unipelt / README.md
apwic's picture
End of training
69076f6 verified
|
raw
history blame
3.32 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-unipelt
    results: []

sentiment-unipelt

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2811
  • Accuracy: 0.9023
  • Precision: 0.8773
  • Recall: 0.8933
  • F1: 0.8846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5459 1.0 122 0.4639 0.7469 0.6922 0.6459 0.6573
0.4335 2.0 244 0.4108 0.7845 0.7552 0.7975 0.7634
0.3375 3.0 366 0.3283 0.8596 0.8347 0.8207 0.8272
0.2801 4.0 488 0.3202 0.8596 0.8278 0.8432 0.8347
0.2572 5.0 610 0.3109 0.8747 0.8438 0.8713 0.8550
0.2339 6.0 732 0.3074 0.8672 0.8353 0.8660 0.8473
0.2249 7.0 854 0.2915 0.8672 0.8353 0.8660 0.8473
0.193 8.0 976 0.2540 0.8972 0.8781 0.8723 0.8751
0.1899 9.0 1098 0.2636 0.8822 0.8526 0.8767 0.8628
0.1801 10.0 1220 0.2371 0.9073 0.8840 0.8969 0.8900
0.157 11.0 1342 0.2567 0.8997 0.8733 0.8941 0.8825
0.1553 12.0 1464 0.2593 0.8972 0.8708 0.8898 0.8793
0.1381 13.0 1586 0.2490 0.9173 0.9010 0.8990 0.9000
0.1476 14.0 1708 0.2701 0.8997 0.8740 0.8916 0.8819
0.1447 15.0 1830 0.2611 0.9123 0.8899 0.9029 0.8960
0.1336 16.0 1952 0.3100 0.8997 0.8718 0.9016 0.8840
0.1192 17.0 2074 0.2935 0.8972 0.8696 0.8948 0.8803
0.1247 18.0 2196 0.2869 0.9023 0.8765 0.8958 0.8851
0.117 19.0 2318 0.2761 0.9023 0.8773 0.8933 0.8846
0.1092 20.0 2440 0.2811 0.9023 0.8773 0.8933 0.8846

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2