File size: 3,322 Bytes
b042c2a 196302f b042c2a 9cea8fc b042c2a 9cea8fc b042c2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-pt-pl30-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-pt-pl30-0
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2793
- Accuracy: 0.8922
- Precision: 0.8665
- Recall: 0.8788
- F1: 0.8722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5424 | 1.0 | 122 | 0.4762 | 0.7419 | 0.6837 | 0.6473 | 0.6575 |
| 0.4345 | 2.0 | 244 | 0.4157 | 0.7895 | 0.7581 | 0.7986 | 0.7674 |
| 0.3391 | 3.0 | 366 | 0.3388 | 0.8546 | 0.8324 | 0.8071 | 0.8180 |
| 0.2837 | 4.0 | 488 | 0.3279 | 0.8622 | 0.8342 | 0.8325 | 0.8333 |
| 0.2761 | 5.0 | 610 | 0.3132 | 0.8647 | 0.8346 | 0.8442 | 0.8391 |
| 0.2459 | 6.0 | 732 | 0.3033 | 0.8747 | 0.8440 | 0.8688 | 0.8544 |
| 0.2321 | 7.0 | 854 | 0.2871 | 0.8822 | 0.8530 | 0.8742 | 0.8622 |
| 0.2206 | 8.0 | 976 | 0.2634 | 0.8822 | 0.8610 | 0.8517 | 0.8561 |
| 0.2067 | 9.0 | 1098 | 0.2634 | 0.8922 | 0.8694 | 0.8712 | 0.8703 |
| 0.192 | 10.0 | 1220 | 0.2696 | 0.8922 | 0.8873 | 0.8462 | 0.8631 |
| 0.1866 | 11.0 | 1342 | 0.2752 | 0.8972 | 0.8691 | 0.8973 | 0.8808 |
| 0.1786 | 12.0 | 1464 | 0.2652 | 0.8972 | 0.8708 | 0.8898 | 0.8793 |
| 0.1695 | 13.0 | 1586 | 0.2536 | 0.9073 | 0.8920 | 0.8819 | 0.8867 |
| 0.1664 | 14.0 | 1708 | 0.2737 | 0.8872 | 0.8587 | 0.8802 | 0.8681 |
| 0.1521 | 15.0 | 1830 | 0.2620 | 0.9023 | 0.8802 | 0.8858 | 0.8830 |
| 0.1494 | 16.0 | 1952 | 0.3030 | 0.8922 | 0.8630 | 0.8963 | 0.8761 |
| 0.1487 | 17.0 | 2074 | 0.2702 | 0.8922 | 0.8650 | 0.8838 | 0.8734 |
| 0.1494 | 18.0 | 2196 | 0.2763 | 0.8947 | 0.8676 | 0.8880 | 0.8766 |
| 0.1334 | 19.0 | 2318 | 0.2826 | 0.8922 | 0.8650 | 0.8838 | 0.8734 |
| 0.1325 | 20.0 | 2440 | 0.2793 | 0.8922 | 0.8665 | 0.8788 | 0.8722 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|