apwic's picture
End of training
db3964e verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r8a2d0.15-1
    results: []

sentiment-lora-r8a2d0.15-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3168
  • Accuracy: 0.8722
  • Precision: 0.8528
  • Recall: 0.8321
  • F1: 0.8413

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5647 1.0 122 0.5166 0.7068 0.6380 0.6250 0.6297
0.5067 2.0 244 0.4954 0.7343 0.6870 0.7020 0.6926
0.4617 3.0 366 0.4391 0.7920 0.7491 0.7503 0.7497
0.4044 4.0 488 0.3911 0.8145 0.7761 0.7788 0.7774
0.382 5.0 610 0.3827 0.8195 0.7849 0.8198 0.7962
0.3494 6.0 732 0.3528 0.8421 0.8092 0.8108 0.8100
0.3423 7.0 854 0.3442 0.8546 0.8239 0.8272 0.8255
0.33 8.0 976 0.3400 0.8672 0.8479 0.8235 0.8342
0.3296 9.0 1098 0.3349 0.8496 0.8245 0.8036 0.8128
0.3074 10.0 1220 0.3349 0.8622 0.8467 0.8100 0.8249
0.2911 11.0 1342 0.3240 0.8697 0.8503 0.8278 0.8377
0.2855 12.0 1464 0.3273 0.8722 0.8463 0.8446 0.8454
0.2903 13.0 1586 0.3285 0.8647 0.8472 0.8167 0.8296
0.2896 14.0 1708 0.3254 0.8672 0.8479 0.8235 0.8342
0.2744 15.0 1830 0.3241 0.8647 0.8377 0.8342 0.8359
0.2691 16.0 1952 0.3210 0.8571 0.8289 0.8239 0.8264
0.2671 17.0 2074 0.3208 0.8697 0.8503 0.8278 0.8377
0.2736 18.0 2196 0.3179 0.8722 0.8512 0.8346 0.8422
0.2662 19.0 2318 0.3180 0.8722 0.8544 0.8296 0.8404
0.2664 20.0 2440 0.3168 0.8722 0.8528 0.8321 0.8413

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2