apwic's picture
End of training
2d40e45 verified
|
raw
history blame
3.33 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r8a2d0.1-0
    results: []

sentiment-lora-r8a2d0.1-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3309
  • Accuracy: 0.8672
  • Precision: 0.8378
  • Recall: 0.8460
  • F1: 0.8417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5622 1.0 122 0.5076 0.7193 0.6565 0.6464 0.6505
0.5003 2.0 244 0.4839 0.7469 0.7107 0.7409 0.7178
0.4614 3.0 366 0.4256 0.7719 0.7281 0.7436 0.7344
0.4022 4.0 488 0.3880 0.8170 0.7798 0.7756 0.7776
0.3678 5.0 610 0.4131 0.8020 0.7657 0.7974 0.7760
0.3376 6.0 732 0.3645 0.8321 0.7965 0.8037 0.7999
0.3268 7.0 854 0.3640 0.8346 0.7988 0.8180 0.8069
0.3044 8.0 976 0.3551 0.8346 0.7996 0.8055 0.8024
0.2984 9.0 1098 0.3509 0.8496 0.8169 0.8261 0.8212
0.2922 10.0 1220 0.3413 0.8521 0.8213 0.8229 0.8221
0.2666 11.0 1342 0.3494 0.8521 0.8193 0.8329 0.8254
0.2641 12.0 1464 0.3520 0.8546 0.8220 0.8372 0.8288
0.2694 13.0 1586 0.3358 0.8496 0.8202 0.8136 0.8167
0.2678 14.0 1708 0.3355 0.8647 0.8352 0.8417 0.8383
0.255 15.0 1830 0.3406 0.8647 0.8346 0.8442 0.8391
0.2482 16.0 1952 0.3370 0.8622 0.8309 0.8450 0.8373
0.2444 17.0 2074 0.3272 0.8697 0.8411 0.8478 0.8443
0.2521 18.0 2196 0.3319 0.8622 0.8314 0.8425 0.8365
0.2456 19.0 2318 0.3293 0.8697 0.8411 0.8478 0.8443
0.2458 20.0 2440 0.3309 0.8672 0.8378 0.8460 0.8417

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2