sentiment-lora-r8 / README.md
apwic's picture
Model save
3043053 verified
|
raw
history blame
3.3 kB
metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r8
    results: []

sentiment-lora-r8

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3143
  • Accuracy: 0.8622
  • Precision: 0.8333
  • Recall: 0.8350
  • F1: 0.8341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5637 1.0 122 0.5043 0.7193 0.6506 0.6239 0.6312
0.5058 2.0 244 0.4905 0.7343 0.6956 0.7220 0.7022
0.4607 3.0 366 0.4207 0.7845 0.7425 0.7600 0.7495
0.3992 4.0 488 0.3723 0.8496 0.8221 0.8086 0.8148
0.3565 5.0 610 0.3855 0.8145 0.7773 0.8038 0.7872
0.332 6.0 732 0.3689 0.8271 0.7903 0.8076 0.7977
0.3089 7.0 854 0.3519 0.8446 0.8132 0.8101 0.8116
0.2979 8.0 976 0.3406 0.8571 0.8289 0.8239 0.8264
0.2887 9.0 1098 0.3582 0.8471 0.8132 0.8293 0.8204
0.268 10.0 1220 0.3394 0.8622 0.8361 0.8275 0.8316
0.267 11.0 1342 0.3339 0.8571 0.8281 0.8264 0.8272
0.2609 12.0 1464 0.3397 0.8622 0.8314 0.8425 0.8365
0.2564 13.0 1586 0.3227 0.8672 0.8436 0.8310 0.8369
0.2566 14.0 1708 0.3246 0.8672 0.8393 0.8410 0.8402
0.2503 15.0 1830 0.3297 0.8722 0.8431 0.8546 0.8484
0.2539 16.0 1952 0.3228 0.8697 0.8404 0.8503 0.8451
0.2478 17.0 2074 0.3142 0.8571 0.8289 0.8239 0.8264
0.2449 18.0 2196 0.3190 0.8722 0.8437 0.8521 0.8477
0.2401 19.0 2318 0.3139 0.8622 0.8333 0.8350 0.8341
0.2392 20.0 2440 0.3143 0.8622 0.8333 0.8350 0.8341

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2