metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r8
results: []
sentiment-lora-r8
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3143
- Accuracy: 0.8622
- Precision: 0.8333
- Recall: 0.8350
- F1: 0.8341
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5637 | 1.0 | 122 | 0.5043 | 0.7193 | 0.6506 | 0.6239 | 0.6312 |
0.5058 | 2.0 | 244 | 0.4905 | 0.7343 | 0.6956 | 0.7220 | 0.7022 |
0.4607 | 3.0 | 366 | 0.4207 | 0.7845 | 0.7425 | 0.7600 | 0.7495 |
0.3992 | 4.0 | 488 | 0.3723 | 0.8496 | 0.8221 | 0.8086 | 0.8148 |
0.3565 | 5.0 | 610 | 0.3855 | 0.8145 | 0.7773 | 0.8038 | 0.7872 |
0.332 | 6.0 | 732 | 0.3689 | 0.8271 | 0.7903 | 0.8076 | 0.7977 |
0.3089 | 7.0 | 854 | 0.3519 | 0.8446 | 0.8132 | 0.8101 | 0.8116 |
0.2979 | 8.0 | 976 | 0.3406 | 0.8571 | 0.8289 | 0.8239 | 0.8264 |
0.2887 | 9.0 | 1098 | 0.3582 | 0.8471 | 0.8132 | 0.8293 | 0.8204 |
0.268 | 10.0 | 1220 | 0.3394 | 0.8622 | 0.8361 | 0.8275 | 0.8316 |
0.267 | 11.0 | 1342 | 0.3339 | 0.8571 | 0.8281 | 0.8264 | 0.8272 |
0.2609 | 12.0 | 1464 | 0.3397 | 0.8622 | 0.8314 | 0.8425 | 0.8365 |
0.2564 | 13.0 | 1586 | 0.3227 | 0.8672 | 0.8436 | 0.8310 | 0.8369 |
0.2566 | 14.0 | 1708 | 0.3246 | 0.8672 | 0.8393 | 0.8410 | 0.8402 |
0.2503 | 15.0 | 1830 | 0.3297 | 0.8722 | 0.8431 | 0.8546 | 0.8484 |
0.2539 | 16.0 | 1952 | 0.3228 | 0.8697 | 0.8404 | 0.8503 | 0.8451 |
0.2478 | 17.0 | 2074 | 0.3142 | 0.8571 | 0.8289 | 0.8239 | 0.8264 |
0.2449 | 18.0 | 2196 | 0.3190 | 0.8722 | 0.8437 | 0.8521 | 0.8477 |
0.2401 | 19.0 | 2318 | 0.3139 | 0.8622 | 0.8333 | 0.8350 | 0.8341 |
0.2392 | 20.0 | 2440 | 0.3143 | 0.8622 | 0.8333 | 0.8350 | 0.8341 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2