sentiment-lora-r8-3 / README.md
apwic's picture
End of training
d366973 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r8-3
    results: []

sentiment-lora-r8-3

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2951
  • Accuracy: 0.8722
  • Precision: 0.8512
  • Recall: 0.8346
  • F1: 0.8422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5643 1.0 122 0.5218 0.7043 0.6241 0.5932 0.5982
0.5086 2.0 244 0.5021 0.7293 0.6814 0.6960 0.6868
0.4652 3.0 366 0.4450 0.7895 0.7464 0.7360 0.7407
0.4248 4.0 488 0.3932 0.8346 0.8074 0.7805 0.7917
0.3812 5.0 610 0.3704 0.8421 0.8083 0.8158 0.8119
0.3506 6.0 732 0.3566 0.8571 0.8266 0.8314 0.8289
0.3323 7.0 854 0.3438 0.8571 0.8365 0.8089 0.8206
0.3108 8.0 976 0.3326 0.8622 0.8414 0.8175 0.8279
0.2998 9.0 1098 0.3250 0.8672 0.8412 0.8360 0.8385
0.2923 10.0 1220 0.3182 0.8571 0.8289 0.8239 0.8264
0.2887 11.0 1342 0.3145 0.8722 0.8485 0.8396 0.8438
0.2716 12.0 1464 0.3092 0.8722 0.8498 0.8371 0.8430
0.2598 13.0 1586 0.3099 0.8772 0.8628 0.8331 0.8458
0.2722 14.0 1708 0.3003 0.8772 0.8561 0.8431 0.8492
0.2536 15.0 1830 0.2978 0.8772 0.8561 0.8431 0.8492
0.2536 16.0 1952 0.2970 0.8822 0.8596 0.8542 0.8568
0.2479 17.0 2074 0.2978 0.8822 0.8639 0.8467 0.8545
0.2487 18.0 2196 0.2970 0.8772 0.8561 0.8431 0.8492
0.2457 19.0 2318 0.2947 0.8722 0.8512 0.8346 0.8422
0.2499 20.0 2440 0.2951 0.8722 0.8512 0.8346 0.8422

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2