metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r8-3
results: []
sentiment-lora-r8-3
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2951
- Accuracy: 0.8722
- Precision: 0.8512
- Recall: 0.8346
- F1: 0.8422
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5643 | 1.0 | 122 | 0.5218 | 0.7043 | 0.6241 | 0.5932 | 0.5982 |
0.5086 | 2.0 | 244 | 0.5021 | 0.7293 | 0.6814 | 0.6960 | 0.6868 |
0.4652 | 3.0 | 366 | 0.4450 | 0.7895 | 0.7464 | 0.7360 | 0.7407 |
0.4248 | 4.0 | 488 | 0.3932 | 0.8346 | 0.8074 | 0.7805 | 0.7917 |
0.3812 | 5.0 | 610 | 0.3704 | 0.8421 | 0.8083 | 0.8158 | 0.8119 |
0.3506 | 6.0 | 732 | 0.3566 | 0.8571 | 0.8266 | 0.8314 | 0.8289 |
0.3323 | 7.0 | 854 | 0.3438 | 0.8571 | 0.8365 | 0.8089 | 0.8206 |
0.3108 | 8.0 | 976 | 0.3326 | 0.8622 | 0.8414 | 0.8175 | 0.8279 |
0.2998 | 9.0 | 1098 | 0.3250 | 0.8672 | 0.8412 | 0.8360 | 0.8385 |
0.2923 | 10.0 | 1220 | 0.3182 | 0.8571 | 0.8289 | 0.8239 | 0.8264 |
0.2887 | 11.0 | 1342 | 0.3145 | 0.8722 | 0.8485 | 0.8396 | 0.8438 |
0.2716 | 12.0 | 1464 | 0.3092 | 0.8722 | 0.8498 | 0.8371 | 0.8430 |
0.2598 | 13.0 | 1586 | 0.3099 | 0.8772 | 0.8628 | 0.8331 | 0.8458 |
0.2722 | 14.0 | 1708 | 0.3003 | 0.8772 | 0.8561 | 0.8431 | 0.8492 |
0.2536 | 15.0 | 1830 | 0.2978 | 0.8772 | 0.8561 | 0.8431 | 0.8492 |
0.2536 | 16.0 | 1952 | 0.2970 | 0.8822 | 0.8596 | 0.8542 | 0.8568 |
0.2479 | 17.0 | 2074 | 0.2978 | 0.8822 | 0.8639 | 0.8467 | 0.8545 |
0.2487 | 18.0 | 2196 | 0.2970 | 0.8772 | 0.8561 | 0.8431 | 0.8492 |
0.2457 | 19.0 | 2318 | 0.2947 | 0.8722 | 0.8512 | 0.8346 | 0.8422 |
0.2499 | 20.0 | 2440 | 0.2951 | 0.8722 | 0.8512 | 0.8346 | 0.8422 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2