apwic's picture
Model save
fde397c verified
|
raw
history blame
3.32 kB
metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r2a1d0.05-1
    results: []

sentiment-lora-r2a1d0.05-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3638
  • Accuracy: 0.8446
  • Precision: 0.8193
  • Recall: 0.7951
  • F1: 0.8055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5663 1.0 122 0.5216 0.7293 0.6677 0.6510 0.6572
0.5149 2.0 244 0.5134 0.7243 0.6758 0.6899 0.6810
0.4925 3.0 366 0.4821 0.7569 0.7055 0.6980 0.7014
0.4608 4.0 488 0.4654 0.7644 0.7150 0.7083 0.7114
0.4493 5.0 610 0.4600 0.7569 0.7126 0.7305 0.7193
0.4257 6.0 732 0.4307 0.7870 0.7433 0.7318 0.7369
0.4178 7.0 854 0.4181 0.7970 0.7552 0.7614 0.7581
0.3977 8.0 976 0.3972 0.8070 0.7687 0.7560 0.7617
0.3946 9.0 1098 0.3937 0.8145 0.7779 0.7663 0.7716
0.3762 10.0 1220 0.3874 0.8246 0.7995 0.7584 0.7738
0.3727 11.0 1342 0.3787 0.8321 0.8014 0.7837 0.7915
0.3626 12.0 1464 0.3750 0.8371 0.8059 0.7947 0.7999
0.359 13.0 1586 0.3728 0.8296 0.8066 0.7644 0.7803
0.3488 14.0 1708 0.3709 0.8296 0.8049 0.7669 0.7816
0.3445 15.0 1830 0.3667 0.8421 0.8131 0.7983 0.8050
0.3344 16.0 1952 0.3656 0.8421 0.8142 0.7958 0.8040
0.3339 17.0 2074 0.3654 0.8396 0.8128 0.7890 0.7992
0.3357 18.0 2196 0.3638 0.8421 0.8154 0.7933 0.8029
0.3357 19.0 2318 0.3646 0.8421 0.8154 0.7933 0.8029
0.3359 20.0 2440 0.3638 0.8446 0.8193 0.7951 0.8055

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2