apwic's picture
End of training
706d114 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r16a0d0.1-0
    results: []

sentiment-lora-r16a0d0.1-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2912
  • Accuracy: 0.8647
  • Precision: 0.8346
  • Recall: 0.8442
  • F1: 0.8391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.559 1.0 122 0.5023 0.7268 0.6671 0.6592 0.6627
0.4818 2.0 244 0.4518 0.7569 0.7248 0.7605 0.7318
0.4129 3.0 366 0.3967 0.8246 0.7876 0.7959 0.7914
0.3519 4.0 488 0.3626 0.8496 0.8193 0.8161 0.8177
0.3191 5.0 610 0.3720 0.8471 0.8130 0.8393 0.8235
0.2977 6.0 732 0.3482 0.8546 0.8216 0.8422 0.8303
0.2861 7.0 854 0.3343 0.8672 0.8363 0.8535 0.8439
0.2662 8.0 976 0.3213 0.8622 0.8314 0.8425 0.8365
0.2618 9.0 1098 0.3246 0.8697 0.8399 0.8528 0.8458
0.2556 10.0 1220 0.3065 0.8596 0.8307 0.8307 0.8307
0.2353 11.0 1342 0.3148 0.8722 0.8416 0.8621 0.8505
0.24 12.0 1464 0.3098 0.8747 0.8451 0.8613 0.8524
0.2346 13.0 1586 0.2989 0.8772 0.8524 0.8506 0.8515
0.2367 14.0 1708 0.3001 0.8697 0.8399 0.8528 0.8458
0.2248 15.0 1830 0.3040 0.8722 0.8420 0.8596 0.8498
0.2174 16.0 1952 0.3016 0.8697 0.8386 0.8603 0.8479
0.2112 17.0 2074 0.2887 0.8647 0.8346 0.8442 0.8391
0.2162 18.0 2196 0.2980 0.8722 0.8416 0.8621 0.8505
0.2124 19.0 2318 0.2892 0.8697 0.8411 0.8478 0.8443
0.2118 20.0 2440 0.2912 0.8647 0.8346 0.8442 0.8391

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2