apwic's picture
End of training
f405036 verified
|
raw
history blame
3.32 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r16-0
    results: []

sentiment-lora-r16-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3046
  • Accuracy: 0.8672
  • Precision: 0.8385
  • Recall: 0.8435
  • F1: 0.8409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5577 1.0 122 0.4974 0.7168 0.6466 0.6196 0.6267
0.4834 2.0 244 0.4640 0.7569 0.7260 0.7630 0.7327
0.4095 3.0 366 0.3775 0.8296 0.7937 0.7994 0.7964
0.339 4.0 488 0.3585 0.8446 0.8120 0.8151 0.8135
0.3189 5.0 610 0.3868 0.8296 0.7951 0.8294 0.8068
0.2953 6.0 732 0.3580 0.8496 0.8158 0.8436 0.8267
0.2737 7.0 854 0.3384 0.8571 0.8260 0.8339 0.8298
0.2691 8.0 976 0.3253 0.8647 0.8472 0.8167 0.8296
0.2496 9.0 1098 0.3504 0.8596 0.8278 0.8432 0.8347
0.2457 10.0 1220 0.3211 0.8596 0.8316 0.8282 0.8298
0.2386 11.0 1342 0.3201 0.8647 0.8387 0.8317 0.8351
0.2377 12.0 1464 0.3218 0.8672 0.8378 0.8460 0.8417
0.2277 13.0 1586 0.3138 0.8672 0.8393 0.8410 0.8402
0.2276 14.0 1708 0.3163 0.8647 0.8352 0.8417 0.8383
0.2271 15.0 1830 0.3158 0.8697 0.8399 0.8528 0.8458
0.2086 16.0 1952 0.3202 0.8647 0.8332 0.8517 0.8413
0.2151 17.0 2074 0.3024 0.8747 0.8510 0.8438 0.8473
0.2206 18.0 2196 0.3133 0.8672 0.8363 0.8535 0.8439
0.2044 19.0 2318 0.3063 0.8672 0.8378 0.8460 0.8417
0.2074 20.0 2440 0.3046 0.8672 0.8385 0.8435 0.8409

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2