metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r16-0
results: []
sentiment-lora-r16-0
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3046
- Accuracy: 0.8672
- Precision: 0.8385
- Recall: 0.8435
- F1: 0.8409
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5577 | 1.0 | 122 | 0.4974 | 0.7168 | 0.6466 | 0.6196 | 0.6267 |
0.4834 | 2.0 | 244 | 0.4640 | 0.7569 | 0.7260 | 0.7630 | 0.7327 |
0.4095 | 3.0 | 366 | 0.3775 | 0.8296 | 0.7937 | 0.7994 | 0.7964 |
0.339 | 4.0 | 488 | 0.3585 | 0.8446 | 0.8120 | 0.8151 | 0.8135 |
0.3189 | 5.0 | 610 | 0.3868 | 0.8296 | 0.7951 | 0.8294 | 0.8068 |
0.2953 | 6.0 | 732 | 0.3580 | 0.8496 | 0.8158 | 0.8436 | 0.8267 |
0.2737 | 7.0 | 854 | 0.3384 | 0.8571 | 0.8260 | 0.8339 | 0.8298 |
0.2691 | 8.0 | 976 | 0.3253 | 0.8647 | 0.8472 | 0.8167 | 0.8296 |
0.2496 | 9.0 | 1098 | 0.3504 | 0.8596 | 0.8278 | 0.8432 | 0.8347 |
0.2457 | 10.0 | 1220 | 0.3211 | 0.8596 | 0.8316 | 0.8282 | 0.8298 |
0.2386 | 11.0 | 1342 | 0.3201 | 0.8647 | 0.8387 | 0.8317 | 0.8351 |
0.2377 | 12.0 | 1464 | 0.3218 | 0.8672 | 0.8378 | 0.8460 | 0.8417 |
0.2277 | 13.0 | 1586 | 0.3138 | 0.8672 | 0.8393 | 0.8410 | 0.8402 |
0.2276 | 14.0 | 1708 | 0.3163 | 0.8647 | 0.8352 | 0.8417 | 0.8383 |
0.2271 | 15.0 | 1830 | 0.3158 | 0.8697 | 0.8399 | 0.8528 | 0.8458 |
0.2086 | 16.0 | 1952 | 0.3202 | 0.8647 | 0.8332 | 0.8517 | 0.8413 |
0.2151 | 17.0 | 2074 | 0.3024 | 0.8747 | 0.8510 | 0.8438 | 0.8473 |
0.2206 | 18.0 | 2196 | 0.3133 | 0.8672 | 0.8363 | 0.8535 | 0.8439 |
0.2044 | 19.0 | 2318 | 0.3063 | 0.8672 | 0.8378 | 0.8460 | 0.8417 |
0.2074 | 20.0 | 2440 | 0.3046 | 0.8672 | 0.8385 | 0.8435 | 0.8409 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2