metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-base-1
results: []
sentiment-base-1
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7891
- Accuracy: 0.8972
- Precision: 0.8796
- Recall: 0.8698
- F1: 0.8745
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.411 | 1.0 | 122 | 0.2751 | 0.8722 | 0.8474 | 0.8421 | 0.8446 |
0.2264 | 2.0 | 244 | 0.3037 | 0.8872 | 0.8574 | 0.8977 | 0.8719 |
0.1467 | 3.0 | 366 | 0.3442 | 0.8772 | 0.8465 | 0.8756 | 0.8582 |
0.0961 | 4.0 | 488 | 0.3737 | 0.8997 | 0.8819 | 0.8741 | 0.8778 |
0.0726 | 5.0 | 610 | 0.4306 | 0.8997 | 0.8835 | 0.8716 | 0.8772 |
0.0514 | 6.0 | 732 | 0.6449 | 0.8847 | 0.8546 | 0.8884 | 0.8677 |
0.0532 | 7.0 | 854 | 0.5595 | 0.8972 | 0.8754 | 0.8773 | 0.8764 |
0.0274 | 8.0 | 976 | 0.6728 | 0.8872 | 0.8687 | 0.8552 | 0.8615 |
0.0186 | 9.0 | 1098 | 0.6218 | 0.9073 | 0.8977 | 0.8744 | 0.8849 |
0.0121 | 10.0 | 1220 | 0.6576 | 0.8922 | 0.8766 | 0.8587 | 0.8669 |
0.0244 | 11.0 | 1342 | 0.7507 | 0.8972 | 0.8940 | 0.8523 | 0.8695 |
0.0062 | 12.0 | 1464 | 0.6859 | 0.8972 | 0.8849 | 0.8623 | 0.8724 |
0.0099 | 13.0 | 1586 | 0.6514 | 0.9073 | 0.8904 | 0.8844 | 0.8873 |
0.0087 | 14.0 | 1708 | 0.7604 | 0.8997 | 0.8852 | 0.8691 | 0.8765 |
0.0056 | 15.0 | 1830 | 0.7282 | 0.9023 | 0.8875 | 0.8733 | 0.8799 |
0.0063 | 16.0 | 1952 | 0.6987 | 0.9123 | 0.8965 | 0.8904 | 0.8934 |
0.0071 | 17.0 | 2074 | 0.7402 | 0.9048 | 0.8897 | 0.8776 | 0.8833 |
0.0023 | 18.0 | 2196 | 0.7846 | 0.8922 | 0.8719 | 0.8662 | 0.8690 |
0.0043 | 19.0 | 2318 | 0.7948 | 0.8922 | 0.8719 | 0.8662 | 0.8690 |
0.0021 | 20.0 | 2440 | 0.7891 | 0.8972 | 0.8796 | 0.8698 | 0.8745 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2