sentiment-base-1 / README.md
apwic's picture
End of training
4ea044f verified
|
raw
history blame
3.32 kB
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-base-1
    results: []

sentiment-base-1

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7891
  • Accuracy: 0.8972
  • Precision: 0.8796
  • Recall: 0.8698
  • F1: 0.8745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.411 1.0 122 0.2751 0.8722 0.8474 0.8421 0.8446
0.2264 2.0 244 0.3037 0.8872 0.8574 0.8977 0.8719
0.1467 3.0 366 0.3442 0.8772 0.8465 0.8756 0.8582
0.0961 4.0 488 0.3737 0.8997 0.8819 0.8741 0.8778
0.0726 5.0 610 0.4306 0.8997 0.8835 0.8716 0.8772
0.0514 6.0 732 0.6449 0.8847 0.8546 0.8884 0.8677
0.0532 7.0 854 0.5595 0.8972 0.8754 0.8773 0.8764
0.0274 8.0 976 0.6728 0.8872 0.8687 0.8552 0.8615
0.0186 9.0 1098 0.6218 0.9073 0.8977 0.8744 0.8849
0.0121 10.0 1220 0.6576 0.8922 0.8766 0.8587 0.8669
0.0244 11.0 1342 0.7507 0.8972 0.8940 0.8523 0.8695
0.0062 12.0 1464 0.6859 0.8972 0.8849 0.8623 0.8724
0.0099 13.0 1586 0.6514 0.9073 0.8904 0.8844 0.8873
0.0087 14.0 1708 0.7604 0.8997 0.8852 0.8691 0.8765
0.0056 15.0 1830 0.7282 0.9023 0.8875 0.8733 0.8799
0.0063 16.0 1952 0.6987 0.9123 0.8965 0.8904 0.8934
0.0071 17.0 2074 0.7402 0.9048 0.8897 0.8776 0.8833
0.0023 18.0 2196 0.7846 0.8922 0.8719 0.8662 0.8690
0.0043 19.0 2318 0.7948 0.8922 0.8719 0.8662 0.8690
0.0021 20.0 2440 0.7891 0.8972 0.8796 0.8698 0.8745

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2