File size: 3,347 Bytes
f612efb
ccf0e84
 
f612efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nerugm-lora-r4a2d0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nerugm-lora-r4a2d0.1

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1302
- Precision: 0.7375
- Recall: 0.8605
- F1: 0.7943
- Accuracy: 0.9573

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.7665        | 1.0   | 528   | 0.4290          | 0.3803    | 0.1255 | 0.1887 | 0.8711   |
| 0.336         | 2.0   | 1056  | 0.2177          | 0.6187    | 0.7751 | 0.6882 | 0.9335   |
| 0.2067        | 3.0   | 1584  | 0.1743          | 0.6523    | 0.8187 | 0.7261 | 0.9410   |
| 0.1734        | 4.0   | 2112  | 0.1525          | 0.7026    | 0.8443 | 0.7670 | 0.9500   |
| 0.1557        | 5.0   | 2640  | 0.1442          | 0.7125    | 0.8512 | 0.7757 | 0.9524   |
| 0.146         | 6.0   | 3168  | 0.1445          | 0.7085    | 0.8629 | 0.7781 | 0.9520   |
| 0.1397        | 7.0   | 3696  | 0.1444          | 0.7145    | 0.8768 | 0.7874 | 0.9525   |
| 0.1338        | 8.0   | 4224  | 0.1386          | 0.7262    | 0.8675 | 0.7906 | 0.9545   |
| 0.1277        | 9.0   | 4752  | 0.1365          | 0.7395    | 0.8629 | 0.7965 | 0.9561   |
| 0.1255        | 10.0  | 5280  | 0.1332          | 0.7348    | 0.8629 | 0.7937 | 0.9563   |
| 0.1215        | 11.0  | 5808  | 0.1330          | 0.7242    | 0.8652 | 0.7885 | 0.9557   |
| 0.1189        | 12.0  | 6336  | 0.1340          | 0.7342    | 0.8652 | 0.7943 | 0.9561   |
| 0.1179        | 13.0  | 6864  | 0.1295          | 0.7445    | 0.8582 | 0.7973 | 0.9571   |
| 0.114         | 14.0  | 7392  | 0.1295          | 0.7446    | 0.8675 | 0.8014 | 0.9579   |
| 0.1128        | 15.0  | 7920  | 0.1317          | 0.7371    | 0.8652 | 0.7960 | 0.9571   |
| 0.1115        | 16.0  | 8448  | 0.1300          | 0.7376    | 0.8675 | 0.7973 | 0.9575   |
| 0.1109        | 17.0  | 8976  | 0.1307          | 0.7357    | 0.8652 | 0.7952 | 0.9577   |
| 0.1097        | 18.0  | 9504  | 0.1319          | 0.7386    | 0.8652 | 0.7969 | 0.9575   |
| 0.1086        | 19.0  | 10032 | 0.1296          | 0.7375    | 0.8605 | 0.7943 | 0.9573   |
| 0.1094        | 20.0  | 10560 | 0.1302          | 0.7375    | 0.8605 | 0.7943 | 0.9573   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2