File size: 1,995 Bytes
8162219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c7426
 
 
 
 
 
8162219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c7426
 
8162219
 
 
 
 
 
 
92c7426
 
 
 
 
 
 
8162219
 
 
 
 
92c7426
 
8162219
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: LazarusNLP/IndoNanoT5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: indosum-base-0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indosum-base-0

This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7170
- Rouge1: 72.5364
- Rouge2: 65.2519
- Rougel: 69.5637
- Rougelsum: 71.6884
- Gen Len: 98.9053

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 1.2132        | 1.0   | 892  | 0.7742          | 67.4414 | 59.7409 | 64.517  | 66.4918   | 94.092   |
| 0.686         | 2.0   | 1784 | 0.6673          | 70.2138 | 62.8202 | 67.1553 | 69.3063   | 100.2933 |
| 0.491         | 3.0   | 2676 | 0.6274          | 71.2142 | 63.9943 | 68.2722 | 70.2971   | 100.944  |
| 0.343         | 4.0   | 3568 | 0.6469          | 71.7114 | 64.489  | 68.7214 | 70.7949   | 98.8227  |
| 0.2059        | 5.0   | 4460 | 0.7170          | 72.5364 | 65.2519 | 69.5637 | 71.6884   | 98.9053  |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1