anvorja's picture
Uploading best model based on F1 score
f2f3a4f verified
|
raw
history blame
2.78 kB
metadata
library_name: transformers
base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: >-
      xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish
    results: []

xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish

This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-english on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1526
  • Precision: 0.8568
  • Recall: 0.8258
  • F1: 0.8410
  • Accuracy: 0.9542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 379 0.8877 0.5421 0.4232 0.4754 0.7697
0.8712 2.0 758 0.7159 0.5625 0.4761 0.5157 0.8265
0.1507 3.0 1137 0.4917 0.6528 0.5265 0.5829 0.8724
0.0984 4.0 1516 0.3969 0.7123 0.6516 0.6806 0.9005
0.0984 5.0 1895 0.3112 0.7463 0.6452 0.6920 0.9090
0.0732 6.0 2274 0.2653 0.8166 0.7239 0.7674 0.9299
0.0561 7.0 2653 0.2200 0.8006 0.7148 0.7553 0.9308
0.0465 8.0 3032 0.1590 0.8451 0.7884 0.8158 0.9485
0.0465 9.0 3411 0.1526 0.8568 0.8258 0.8410 0.9542
0.0396 10.0 3790 0.1494 0.8493 0.8142 0.8314 0.9526

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3