Uploading best model based on F1 score
Browse files- README.md +79 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: FacebookAI/xlm-roberta-large-finetuned-conll03-english
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-large-finetuned-conll03-english-finetuned-ner-biomedical-spanish
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1526
|
24 |
+
- Precision: 0.8568
|
25 |
+
- Recall: 0.8258
|
26 |
+
- F1: 0.8410
|
27 |
+
- Accuracy: 0.9542
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 4
|
51 |
+
- total_train_batch_size: 32
|
52 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_steps: 200
|
55 |
+
- num_epochs: 10
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| No log | 1.0 | 379 | 0.8877 | 0.5421 | 0.4232 | 0.4754 | 0.7697 |
|
63 |
+
| 0.8712 | 2.0 | 758 | 0.7159 | 0.5625 | 0.4761 | 0.5157 | 0.8265 |
|
64 |
+
| 0.1507 | 3.0 | 1137 | 0.4917 | 0.6528 | 0.5265 | 0.5829 | 0.8724 |
|
65 |
+
| 0.0984 | 4.0 | 1516 | 0.3969 | 0.7123 | 0.6516 | 0.6806 | 0.9005 |
|
66 |
+
| 0.0984 | 5.0 | 1895 | 0.3112 | 0.7463 | 0.6452 | 0.6920 | 0.9090 |
|
67 |
+
| 0.0732 | 6.0 | 2274 | 0.2653 | 0.8166 | 0.7239 | 0.7674 | 0.9299 |
|
68 |
+
| 0.0561 | 7.0 | 2653 | 0.2200 | 0.8006 | 0.7148 | 0.7553 | 0.9308 |
|
69 |
+
| 0.0465 | 8.0 | 3032 | 0.1590 | 0.8451 | 0.7884 | 0.8158 | 0.9485 |
|
70 |
+
| 0.0465 | 9.0 | 3411 | 0.1526 | 0.8568 | 0.8258 | 0.8410 | 0.9542 |
|
71 |
+
| 0.0396 | 10.0 | 3790 | 0.1494 | 0.8493 | 0.8142 | 0.8314 | 0.9526 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.46.3
|
77 |
+
- Pytorch 2.5.1+cu121
|
78 |
+
- Datasets 3.1.0
|
79 |
+
- Tokenizers 0.20.3
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235612764
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2b5d01690011e76602054e05cb54b1ec245fa4a50cf82a23a09596a0965ff3b
|
3 |
size 2235612764
|