File size: 14,508 Bytes
5306da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import threading
import uvicorn
import asyncio
from pathlib import Path
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, status
from pydantic import BaseModel, HttpUrl
from chat_database import create_chat_entry, get_all_chat_details, rename_chat_title, save_context_detail, clear_context_detail, delete_chat, save_system_prompt
from fastapi.responses import JSONResponse
from pdfminer.high_level import extract_text
from io import BytesIO
import httpx
import pandas as pd
from bs4 import BeautifulSoup
from urllib.parse import urlparse
from embeddings import get_and_store_embeddings
from qdrent import delete_embeddings
import re
from readability import Document as ReadabilityDocument
from providers.ppt_and_docx_helper import extract_text_from_docx, extract_text_from_pptx
ALLOWED_EXT = {
".pdf", ".csv", ".txt",
".ppt", ".pptx",
".doc", ".docx",
".xls", ".xlsx"
}
app = FastAPI()
class Document(BaseModel):
session_id: str
data: str
filename: str
class RenameChatRequest(BaseModel):
sessionId: str
title: str
class SavePromptRequest(BaseModel):
sessionId: str
prompt: str
class LinkInput(BaseModel):
link: HttpUrl
sessionId: str
title: str
summary: str
categories: str
class TextInput(BaseModel):
text: str
sessionId: str
title: str
name: str
summary: str
categories: str
class clearContextInput(BaseModel):
sessionId: str
@app.get('/get-chats')
async def get_chat_names():
chat_history = get_all_chat_details()
return chat_history
@app.post('/create-chat/{sessionId}')
async def createChat(sessionId: str):
chat_history = create_chat_entry(sessionId)
return chat_history
@app.post('/save-prompt')
async def savePrompt(req: SavePromptRequest):
saved = save_system_prompt(req.sessionId, req.prompt)
return saved
@app.post('/rename-chat')
async def renameChat(req: RenameChatRequest):
renamed = rename_chat_title(req.sessionId, req.title)
return renamed
def _process_documents(contents: bytes, session_id: str, name: str, title: str, summary: str, categories: str) -> str:
ext = Path(name).suffix.lower()
# 1) extract text (blocking)
if ext == ".pdf":
text = extract_text(BytesIO(contents))
elif ext in {".doc", ".docx"}:
text = extract_text_from_docx(contents)
elif ext in {".ppt", ".pptx"}:
text = extract_text_from_pptx(contents)
elif ext in {".xls", ".xlsx"}:
xls = pd.read_excel(BytesIO(contents), sheet_name=None)
parts = []
for sheet, df in xls.items():
parts.append(f"--- Sheet: {sheet} ---")
parts.append(df.to_csv(index=False))
text = "\n".join(parts)
elif ext in {".csv", ".txt"}:
text = contents.decode("utf-8", errors="ignore")
else:
raise ValueError(f"Unsupported extension {ext!r}")
asyncio.run(save_context_detail(
session_id, name, title, summary, categories))
asyncio.run(get_and_store_embeddings(
text, session_id, name, title, summary, categories))
return text
@app.post("/upload-pdf")
async def upload_pdf(
pdf_file: UploadFile = File(...),
name: str = Form(...),
sessionId: str = Form(...),
title: str = Form(...),
summary: str = Form(...),
categories: str = Form(...)
):
try:
ext = Path(name).suffix.lower()
if ext not in ALLOWED_EXT:
raise HTTPException(
400,
detail=(
f"Invalid file type {ext!r}. "
"Allowed: PDF, CSV, TXT, PPT(X), DOC(X), XLS(X)."
)
)
contents = await pdf_file.read()
loop = asyncio.get_running_loop()
text_content = await loop.run_in_executor(
None, # use default ThreadPoolExecutor
_process_documents, # the blocking function
contents, sessionId, name, title, summary, categories
)
# pdf_stream = BytesIO(contents)
# print("Content : ", contents)
# print("pdf_stream : ", pdf_stream)
# try:
# text_content = extract_text(pdf_stream)
# print("pdf content : ", text_content)
# except Exception as e:
# print("error in pdf content : ", e)
# raise HTTPException(
# status_code=400, detail=f"Error extracting text from PDF: {e}")
# print("\n\nSaving details")
# await save_context_detail(sessionId, name)
# print("\n\nSaving embeddings")
# embeddded = await get_and_store_embeddings(text_content, sessionId, name)
return JSONResponse(status_code=200, content={"status": "received", "text": text_content})
except Exception as e:
print("Error in embedding pdf : ", e)
return JSONResponse(status_code=500, content={"status": "failed", "detail": e})
async def fetch_url_content(link: str):
try:
async with httpx.AsyncClient(timeout=10) as client:
response = await client.get(link)
response.raise_for_status() # Raise exception for HTTP errors
return response
except httpx.RequestError as exc:
raise HTTPException(
status_code=400, detail=f"Error fetching the URL: {exc}") from exc
except httpx.HTTPStatusError as exc:
raise HTTPException(
status_code=exc.response.status_code,
detail=f"Error response {exc.response.status_code} while requesting {exc.request.url}"
) from exc
def get_content_type(response: httpx.Response) -> str:
content_type = response.headers.get('Content-Type', '').lower()
if ';' in content_type:
content_type = content_type.split(';')[0].strip()
return content_type
def extract_text_from_pdf(pdf_content: bytes) -> str:
pdf_stream = BytesIO(pdf_content)
try:
text = extract_text(pdf_stream)
return text
except Exception as e:
raise HTTPException(
status_code=400, detail=f"Error extracting text from PDF: {e}") from e
def extract_text_from_html(html_content: str) -> str:
soup = BeautifulSoup(html_content, 'html.parser')
for script_or_style in soup(['script', 'style']):
script_or_style.decompose()
text = soup.get_text(separator='\n')
lines = [line.strip() for line in text.splitlines()]
text = '\n'.join(line for line in lines if line)
return text
def is_supported_domain(url: str) -> bool:
parsed_url = urlparse(url)
unsupported_domains = ['drive.google.com', 'docs.google.com']
return parsed_url.netloc not in unsupported_domains
@app.post("/process-link")
async def process_link(input_data: LinkInput):
try:
link = str(input_data.link)
session_id = input_data.sessionId
title = input_data.title
summary = input_data.summary
categories = input_data.categories
blocked_domains = ("drive.google.com",
"docs.google.com", "dropbox.com")
if any(blocked in link for blocked in blocked_domains):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Links from Google Drive or similar services are not supported. Please provide a direct link to a PDF or a public web page."
)
if not is_supported_domain(link):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Links from Google Drive or similar services are not supported. Please provide a direct link to a PDF or a public web page."
)
response = await fetch_url_content(link)
content_type = get_content_type(response)
text_content = None
extracted_from = None
if content_type.startswith('application/pdf'):
text_content = extract_text_from_pdf(response.content)
extracted_from = 'pdf'
elif content_type.startswith('application/vnd.openxmlformats-officedocument.wordprocessingml.document'):
text_content = extract_text_from_docx(response.content)
extracted_from = 'docx'
elif content_type.startswith('application/vnd.openxmlformats-officedocument.presentationml.presentation'):
text_content = extract_text_from_pptx(response.content)
extracted_from = 'pptx'
elif content_type.startswith('text/html'):
html = response.text
async def try_fetch_readme_raw(urls):
for raw_url in urls:
try:
raw_resp = await fetch_url_content(raw_url)
if raw_resp.status_code == 200 and raw_resp.text.strip():
return raw_resp.text
except Exception:
continue
return None
github_repo_match = re.match(
r"https://github\.com/([^/]+)/([^/]+)(/)?$", link)
if github_repo_match:
user, repo = github_repo_match.group(
1), github_repo_match.group(2)
raw_urls = [
f"https://raw.githubusercontent.com/{user}/{repo}/main/README.md",
f"https://raw.githubusercontent.com/{user}/{repo}/master/README.md"
]
text_content = await try_fetch_readme_raw(raw_urls)
if text_content:
extracted_from = 'github_readme'
if text_content is None:
gitlab_repo_match = re.match(
r"https://gitlab\.com/([^/]+)/([^/]+)(/)?$", link)
if gitlab_repo_match:
user, repo = gitlab_repo_match.group(
1), gitlab_repo_match.group(2)
raw_urls = [
f"https://gitlab.com/{user}/{repo}/-/raw/main/README.md",
f"https://gitlab.com/{user}/{repo}/-/raw/master/README.md"
]
text_content = await try_fetch_readme_raw(raw_urls)
if text_content:
extracted_from = 'gitlab_readme'
if text_content is None and "huggingface.co/" in link:
raw_readme_url = link.rstrip("/") + "/raw/main/README.md"
try:
raw_resp = await fetch_url_content(raw_readme_url)
if raw_resp.status_code == 200 and raw_resp.text.strip():
text_content = raw_resp.text
extracted_from = 'huggingface_readme'
except Exception:
pass
if text_content is None:
try:
doc = ReadabilityDocument(html)
except Exception as e:
print(f"Error creating Document: {e}")
summary_html = doc.summary()
soup = BeautifulSoup(summary_html, "html.parser")
text_content = "\n".join(soup.stripped_strings)
# print("\n\n\n\n\n\nScraped Text : ", text_content)
extracted_from = 'html'
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unsupported content type: {content_type}"
)
await save_context_detail(session_id, link, title, summary, categories)
await get_and_store_embeddings(text_content, session_id, link, title, summary, categories)
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"content_type": extracted_from,
"text": text_content
}
)
except HTTPException as http_exc:
raise http_exc
except Exception as e:
print("Error in uploding link : ", e)
return JSONResponse(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
content={
"success": False,
"detail": str(e)
}
)
@app.post("/process-text")
async def process_text(input_data: TextInput):
try:
text = str(input_data.text)
session_id = input_data.sessionId
name = input_data.name
title = input_data.title
summary = input_data.summary
categories = input_data.categories
await save_context_detail(session_id, name, title, summary, categories)
await get_and_store_embeddings(text, session_id, name, title, summary, categories)
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"text": text
}
)
except HTTPException as http_exc:
raise http_exc
except Exception as e:
return JSONResponse(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
content={
"success": False,
"detail": str(e)
}
)
@app.post("/clear-context")
async def clearContext(body: clearContextInput):
sessionId = body.sessionId
deleted = delete_embeddings(sessionId)
if deleted:
clear_context_detail(sessionId)
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"message": "all the embedding are deleted"
}
)
return JSONResponse(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
content={
"status": "failed",
"message": "failed to delete"
}
)
@app.post("/delete-chat")
async def clearChat(body: clearContextInput):
sessionId = body.sessionId
deleted = delete_embeddings(sessionId)
if deleted:
delete_chat(sessionId)
return JSONResponse(
status_code=status.HTTP_200_OK,
content={
"status": "success",
"message": "all the embedding are deleted"
}
)
return JSONResponse(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
content={
"status": "failed",
"message": "failed to delete"
}
)
def run_fastapi():
uvicorn.run(app, host="0.0.0.0", port=8082, log_level="info")
threading.Thread(target=run_fastapi, daemon=True).start()
|