File size: 5,390 Bytes
0b4f67c
a119edc
 
0b4f67c
 
a119edc
0b4f67c
e1926c3
 
3a5b628
0b4f67c
3a5b628
0b4f67c
3a5b628
 
8ab7d86
 
3a5b628
 
 
 
 
 
8ab7d86
 
 
 
 
 
 
3a5b628
 
 
 
 
 
 
8ab7d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4f67c
 
 
 
 
3a5b628
0b4f67c
a119edc
0b4f67c
a119edc
 
0b4f67c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5b628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
language:
- sk
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- mozilla-foundation/common_voice_8_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M - Slovak
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: sk
    metrics:
    - name: Test WER
      type: wer
      value: 18.609
    - name: Test CER
      type: cer
      value: 5.488
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sk
    metrics:
    - name: Test WER
      type: wer
      value: 40.548
    - name: Test CER
      type: cer
      value: 17.733
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: sk
    metrics:
    - name: Test WER
      type: wer
      value: 44.1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-300M - Slovak

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3067
- Wer: 0.2678

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.175         | 2.41  | 400  | 4.6909          | 1.0    |
| 3.3785        | 4.82  | 800  | 3.3080          | 1.0    |
| 2.6964        | 7.23  | 1200 | 2.0651          | 1.1055 |
| 1.3008        | 9.64  | 1600 | 0.5845          | 0.6207 |
| 1.1185        | 12.05 | 2000 | 0.4195          | 0.4193 |
| 1.0252        | 14.46 | 2400 | 0.3824          | 0.3570 |
| 0.935         | 16.87 | 2800 | 0.3693          | 0.3462 |
| 0.8818        | 19.28 | 3200 | 0.3587          | 0.3318 |
| 0.8534        | 21.69 | 3600 | 0.3420          | 0.3180 |
| 0.8137        | 24.1  | 4000 | 0.3426          | 0.3130 |
| 0.7968        | 26.51 | 4400 | 0.3349          | 0.3102 |
| 0.7558        | 28.92 | 4800 | 0.3216          | 0.3019 |
| 0.7313        | 31.33 | 5200 | 0.3451          | 0.3060 |
| 0.7358        | 33.73 | 5600 | 0.3272          | 0.2967 |
| 0.718         | 36.14 | 6000 | 0.3315          | 0.2882 |
| 0.6991        | 38.55 | 6400 | 0.3299          | 0.2830 |
| 0.6529        | 40.96 | 6800 | 0.3140          | 0.2836 |
| 0.6225        | 43.37 | 7200 | 0.3128          | 0.2751 |
| 0.633         | 45.78 | 7600 | 0.3211          | 0.2774 |
| 0.5876        | 48.19 | 8000 | 0.3162          | 0.2764 |
| 0.588         | 50.6  | 8400 | 0.3082          | 0.2722 |
| 0.5915        | 53.01 | 8800 | 0.3120          | 0.2681 |
| 0.5798        | 55.42 | 9200 | 0.3133          | 0.2709 |
| 0.5736        | 57.83 | 9600 | 0.3086          | 0.2676 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => ""
```

### Eval results on Common Voice 8 "test" (WER):

| Without LM | With LM (run `./eval.py`) |
|---|---|
| 26.707 | 18.609 |