File size: 2,954 Bytes
594a567 3d0f36c 594a567 3d0f36c 594a567 3d0f36c 594a567 3d0f36c 594a567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6780
- Wer: 0.3670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.514 | 2.07 | 400 | 1.4589 | 0.8531 |
| 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 |
| 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 |
| 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 |
| 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 |
| 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 |
| 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 |
| 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 |
| 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 |
| 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 |
| 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 |
| 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 |
| 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 |
| 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 |
| 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 |
| 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 |
| 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 |
| 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 |
| 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 |
| 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 |
| 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 |
| 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 |
| 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 |
| 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|