File size: 4,843 Bytes
291279f 4df7435 291279f 4df7435 291279f bbc669a 291279f bbc669a 291279f bbc669a 2407947 bbc669a 2407947 bbc669a 2407947 291279f 0b33ed3 291279f 4df7435 291279f 4df7435 291279f bbc669a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
language:
- bg
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M - Bulgarian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: bg
metrics:
- name: Test WER
type: wer
value: 21.195
- name: Test CER
type: cer
value: 4.786
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: bg
metrics:
- name: Test WER
type: wer
value: 32.667
- name: Test CER
type: cer
value: 12.452
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: bg
metrics:
- name: Test WER
type: wer
value: 31.03
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Bulgarian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2473
- Wer: 0.3002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1589 | 3.48 | 400 | 3.0830 | 1.0 |
| 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 |
| 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 |
| 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 |
| 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 |
| 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 |
| 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 |
| 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 |
| 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 |
| 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 |
| 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 |
| 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 |
| 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 |
| 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "и надутият му ката блоонкурем взе да се събира"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 30.07 | 21.195 |
|