metadata
tags:
- vision
- ocr
- trocr
- pytorch
license: apache-2.0
datasets:
- custom-captcha-dataset
metrics:
- cer
model_name: anuashok/ocr-captcha-v3
base_model:
- microsoft/trocr-base-printed
anuashok/ocr-captcha-v3
This model is a fine-tuned version of microsoft/trocr-base-printed on Captchas of the type shown below
Training Summary
- CER (Character Error Rate): 0.01394585726004922
- Hyperparameters:
- Learning Rate: 1.5078922700531405e-05
- Batch Size: 16
- Num Epochs: 7
- Warmup Ratio: 0.14813004670666596
- Weight Decay: 0.017176551931326833
- Num Beams: 2
- Length Penalty: 1.3612823161368288
Usage
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
import torch
from PIL import Image
# Load model and processor
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v3")
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-v3")
# Load image
image = Image.open('path_to_your_image.jpg').convert("RGB")
# Load and preprocess image for display
image = Image.open(image_path).convert("RGBA")
# Create white background
background = Image.new("RGBA", image.size, (255, 255, 255))
combined = Image.alpha_composite(background, image).convert("RGB")
# Prepare image
pixel_values = processor(combined, return_tensors="pt").pixel_values
# Generate text
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)