File size: 1,830 Bytes
51581b6 8e98301 ed3c632 8e98301 3075b16 8e98301 6a18331 51581b6 3075b16 ed3c632 8e98301 ed3c632 8e98301 ed3c632 8e98301 ed3c632 8e98301 ed3c632 8e98301 ed3c632 8e98301 ed3c632 8e98301 ed3c632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
tags:
- vision
- ocr
- trocr
- pytorch
license: apache-2.0
datasets:
- custom-captcha-dataset
metrics:
- cer
model_name: anuashok/ocr-captcha-v3
base_model:
- microsoft/trocr-base-printed
---
# anuashok/ocr-captcha-v3
This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on Captchas of the type shown below
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6569b4be1bac1166939f86b2/ncjFKGf86bk18ON9B9mYZ.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6569b4be1bac1166939f86b2/bKLXrLjpjpIwPHaURhjN2.png)
## Training Summary
- **CER (Character Error Rate)**: 0.01394585726004922
- **Hyperparameters**:
- **Learning Rate**: 1.5078922700531405e-05
- **Batch Size**: 16
- **Num Epochs**: 7
- **Warmup Ratio**: 0.14813004670666596
- **Weight Decay**: 0.017176551931326833
- **Num Beams**: 2
- **Length Penalty**: 1.3612823161368288
## Usage
```python
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
import torch
from PIL import Image
# Load model and processor
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v3")
model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-v3")
# Load image
image = Image.open('path_to_your_image.jpg').convert("RGB")
# Load and preprocess image for display
image = Image.open(image_path).convert("RGBA")
# Create white background
background = Image.new("RGBA", image.size, (255, 255, 255))
combined = Image.alpha_composite(background, image).convert("RGB")
# Prepare image
pixel_values = processor(combined, return_tensors="pt").pixel_values
# Generate text
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text) |