File size: 1,794 Bytes
e046111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: t5-large
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-large-billsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large-billsum
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3660
- Rouge1: 54.3212
- Rouge2: 34.3078
- Rougel: 43.7536
- Rougelsum: 47.5193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.6948 | 1.0 | 1250 | 1.4332 | 52.7319 | 33.508 | 42.6688 | 46.3992 |
| 1.4965 | 2.0 | 2500 | 1.3864 | 53.6841 | 33.9189 | 43.3753 | 46.951 |
| 1.4333 | 3.0 | 3750 | 1.3707 | 54.2166 | 34.2285 | 43.5537 | 47.2979 |
| 1.4006 | 4.0 | 5000 | 1.3660 | 54.3212 | 34.3078 | 43.7536 | 47.5193 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|