File size: 4,056 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''
Cleaners are transformations that run over the input text at both training and eval time.

Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
  1. "english_cleaners" for English text
  2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
     the Unidecode library (https://pypi.python.org/pypi/Unidecode)
  3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
     the symbols in symbols.py to match your data).
'''

import re
from unidecode import unidecode
from .number_norm import normalize_numbers
from .abbreviations import abbreviations_en, abbreviations_fr
from .time import expand_time_english

# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')


def expand_abbreviations(text, lang='en'):
    if lang == 'en':
        _abbreviations = abbreviations_en
    elif lang == 'fr':
        _abbreviations = abbreviations_fr
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def expand_numbers(text):
    return normalize_numbers(text)


def lowercase(text):
    return text.lower()


def collapse_whitespace(text):
    return re.sub(_whitespace_re, ' ', text).strip()


def convert_to_ascii(text):
    return unidecode(text)


def remove_aux_symbols(text):
    text = re.sub(r'[\<\>\(\)\[\]\"]+', '', text)
    return text

def replace_symbols(text, lang='en'):
    text = text.replace(';', ',')
    text = text.replace('-', ' ')
    text = text.replace(':', ',')
    if lang == 'en':
        text = text.replace('&', ' and ')
    elif lang == 'fr':
        text = text.replace('&', ' et ')
    elif lang == 'pt':
        text = text.replace('&', ' e ')
    return text

def basic_cleaners(text):
    '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def transliteration_cleaners(text):
    '''Pipeline for non-English text that transliterates to ASCII.'''
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def basic_german_cleaners(text):
    '''Pipeline for German text'''
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


# TODO: elaborate it
def basic_turkish_cleaners(text):
    '''Pipeline for Turkish text'''
    text = text.replace("I", "ı")
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text

def english_cleaners(text):
    '''Pipeline for English text, including number and abbreviation expansion.'''
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = expand_time_english(text)
    text = expand_numbers(text)
    text = expand_abbreviations(text)
    text = replace_symbols(text)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text

def french_cleaners(text):
    '''Pipeline for French text. There is no need to expand numbers, phonemizer already does that'''
    text = lowercase(text)
    text = expand_abbreviations(text, lang='fr')
    text = replace_symbols(text, lang='fr')
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text

def portuguese_cleaners(text):
    '''Basic pipeline for Portuguese text. There is no need to expand abbreviation and
        numbers, phonemizer already does that'''
    text = lowercase(text)
    text = replace_symbols(text, lang='pt')
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text

def phoneme_cleaners(text):
    '''Pipeline for phonemes mode, including number and abbreviation expansion.'''
    text = expand_numbers(text)
    text = convert_to_ascii(text)
    text = expand_abbreviations(text)
    text = replace_symbols(text)
    text = remove_aux_symbols(text)
    text = collapse_whitespace(text)
    return text