File size: 35,344 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Overview\n",
"\n",
"This notebook can be used with both a single or multi- speaker corpus and allows the interactive plotting of speaker embeddings linked to underlying audio (see instructions in the repo's speaker_embedding directory)\n",
"\n",
"Depending on the directory structure used for your corpus, you may need to adjust handling of **speaker_to_utter** and **locations**."
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 2,
=======
"execution_count": null,
>>>>>>> dev
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import glob\n",
"import random\n",
"import numpy as np\n",
"import torch\n",
"import umap\n",
"\n",
"from TTS.speaker_encoder.model import SpeakerEncoder\n",
<<<<<<< HEAD
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.utils.io import load_config\n",
=======
"from TTS.tts.utils.audio import AudioProcessor\n",
"from TTS.tts.utils.generic_utils import load_config\n",
>>>>>>> dev
"\n",
"from bokeh.io import output_notebook, show\n",
"from bokeh.plotting import figure\n",
"from bokeh.models import HoverTool, ColumnDataSource, BoxZoomTool, ResetTool, OpenURL, TapTool\n",
"from bokeh.transform import factor_cmap, factor_mark\n",
"from bokeh.palettes import Category10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For larger sets of speakers, you can use **Category20**, but you need to change it in the **pal** variable too\n",
"\n",
"List of Bokeh palettes here: http://docs.bokeh.org/en/1.4.0/docs/reference/palettes.html\n",
"\n",
"**NB:** if you have problems with other palettes, first see https://stackoverflow.com/questions/48333820/why-do-some-bokeh-palettes-raise-a-valueerror-when-used-in-factor-cmap"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div class=\"bk-root\">\n",
" <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-logo bk-logo-small bk-logo-notebook\"></a>\n",
" <span id=\"1001\">Loading BokehJS ...</span>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": [
"\n",
"(function(root) {\n",
" function now() {\n",
" return new Date();\n",
" }\n",
"\n",
" var force = true;\n",
"\n",
" if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n",
" root._bokeh_onload_callbacks = [];\n",
" root._bokeh_is_loading = undefined;\n",
" }\n",
"\n",
" var JS_MIME_TYPE = 'application/javascript';\n",
" var HTML_MIME_TYPE = 'text/html';\n",
" var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n",
" var CLASS_NAME = 'output_bokeh rendered_html';\n",
"\n",
" /**\n",
" * Render data to the DOM node\n",
" */\n",
" function render(props, node) {\n",
" var script = document.createElement(\"script\");\n",
" node.appendChild(script);\n",
" }\n",
"\n",
" /**\n",
" * Handle when an output is cleared or removed\n",
" */\n",
" function handleClearOutput(event, handle) {\n",
" var cell = handle.cell;\n",
"\n",
" var id = cell.output_area._bokeh_element_id;\n",
" var server_id = cell.output_area._bokeh_server_id;\n",
" // Clean up Bokeh references\n",
" if (id != null && id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
"\n",
" if (server_id !== undefined) {\n",
" // Clean up Bokeh references\n",
" var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n",
" cell.notebook.kernel.execute(cmd, {\n",
" iopub: {\n",
" output: function(msg) {\n",
" var id = msg.content.text.trim();\n",
" if (id in Bokeh.index) {\n",
" Bokeh.index[id].model.document.clear();\n",
" delete Bokeh.index[id];\n",
" }\n",
" }\n",
" }\n",
" });\n",
" // Destroy server and session\n",
" var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n",
" cell.notebook.kernel.execute(cmd);\n",
" }\n",
" }\n",
"\n",
" /**\n",
" * Handle when a new output is added\n",
" */\n",
" function handleAddOutput(event, handle) {\n",
" var output_area = handle.output_area;\n",
" var output = handle.output;\n",
"\n",
" // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n",
" if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n",
" return\n",
" }\n",
"\n",
" var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n",
"\n",
" if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n",
" toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n",
" // store reference to embed id on output_area\n",
" output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n",
" }\n",
" if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n",
" var bk_div = document.createElement(\"div\");\n",
" bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n",
" var script_attrs = bk_div.children[0].attributes;\n",
" for (var i = 0; i < script_attrs.length; i++) {\n",
" toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n",
" }\n",
" // store reference to server id on output_area\n",
" output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n",
" }\n",
" }\n",
"\n",
" function register_renderer(events, OutputArea) {\n",
"\n",
" function append_mime(data, metadata, element) {\n",
" // create a DOM node to render to\n",
" var toinsert = this.create_output_subarea(\n",
" metadata,\n",
" CLASS_NAME,\n",
" EXEC_MIME_TYPE\n",
" );\n",
" this.keyboard_manager.register_events(toinsert);\n",
" // Render to node\n",
" var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n",
" render(props, toinsert[toinsert.length - 1]);\n",
" element.append(toinsert);\n",
" return toinsert\n",
" }\n",
"\n",
" /* Handle when an output is cleared or removed */\n",
" events.on('clear_output.CodeCell', handleClearOutput);\n",
" events.on('delete.Cell', handleClearOutput);\n",
"\n",
" /* Handle when a new output is added */\n",
" events.on('output_added.OutputArea', handleAddOutput);\n",
"\n",
" /**\n",
" * Register the mime type and append_mime function with output_area\n",
" */\n",
" OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n",
" /* Is output safe? */\n",
" safe: true,\n",
" /* Index of renderer in `output_area.display_order` */\n",
" index: 0\n",
" });\n",
" }\n",
"\n",
" // register the mime type if in Jupyter Notebook environment and previously unregistered\n",
" if (root.Jupyter !== undefined) {\n",
" var events = require('base/js/events');\n",
" var OutputArea = require('notebook/js/outputarea').OutputArea;\n",
"\n",
" if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n",
" register_renderer(events, OutputArea);\n",
" }\n",
" }\n",
"\n",
" \n",
" if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n",
" root._bokeh_timeout = Date.now() + 5000;\n",
" root._bokeh_failed_load = false;\n",
" }\n",
"\n",
" var NB_LOAD_WARNING = {'data': {'text/html':\n",
" \"<div style='background-color: #fdd'>\\n\"+\n",
" \"<p>\\n\"+\n",
" \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n",
" \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n",
" \"</p>\\n\"+\n",
" \"<ul>\\n\"+\n",
" \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n",
" \"<li>use INLINE resources instead, as so:</li>\\n\"+\n",
" \"</ul>\\n\"+\n",
" \"<code>\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"</code>\\n\"+\n",
" \"</div>\"}};\n",
"\n",
" function display_loaded() {\n",
" var el = document.getElementById(\"1001\");\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS is loading...\";\n",
" }\n",
" if (root.Bokeh !== undefined) {\n",
" if (el != null) {\n",
" el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n",
" }\n",
" } else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(display_loaded, 100)\n",
" }\n",
" }\n",
"\n",
"\n",
" function run_callbacks() {\n",
" try {\n",
" root._bokeh_onload_callbacks.forEach(function(callback) {\n",
" if (callback != null)\n",
" callback();\n",
" });\n",
" } finally {\n",
" delete root._bokeh_onload_callbacks\n",
" }\n",
" console.debug(\"Bokeh: all callbacks have finished\");\n",
" }\n",
"\n",
" function load_libs(css_urls, js_urls, callback) {\n",
" if (css_urls == null) css_urls = [];\n",
" if (js_urls == null) js_urls = [];\n",
"\n",
" root._bokeh_onload_callbacks.push(callback);\n",
" if (root._bokeh_is_loading > 0) {\n",
" console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n",
" return null;\n",
" }\n",
" if (js_urls == null || js_urls.length === 0) {\n",
" run_callbacks();\n",
" return null;\n",
" }\n",
" console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n",
" root._bokeh_is_loading = css_urls.length + js_urls.length;\n",
"\n",
" function on_load() {\n",
" root._bokeh_is_loading--;\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n",
" run_callbacks()\n",
" }\n",
" }\n",
"\n",
" function on_error() {\n",
" console.error(\"failed to load \" + url);\n",
" }\n",
"\n",
" for (var i = 0; i < css_urls.length; i++) {\n",
" var url = css_urls[i];\n",
" const element = document.createElement(\"link\");\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.rel = \"stylesheet\";\n",
" element.type = \"text/css\";\n",
" element.href = url;\n",
" console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" for (var i = 0; i < js_urls.length; i++) {\n",
" var url = js_urls[i];\n",
" var element = document.createElement('script');\n",
" element.onload = on_load;\n",
" element.onerror = on_error;\n",
" element.async = false;\n",
" element.src = url;\n",
" console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n",
" document.head.appendChild(element);\n",
" }\n",
" };var element = document.getElementById(\"1001\");\n",
" if (element == null) {\n",
" console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n",
" return false;\n",
" }\n",
"\n",
" function inject_raw_css(css) {\n",
" const element = document.createElement(\"style\");\n",
" element.appendChild(document.createTextNode(css));\n",
" document.body.appendChild(element);\n",
" }\n",
"\n",
" \n",
" var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n",
" var css_urls = [];\n",
" \n",
"\n",
" var inline_js = [\n",
" function(Bokeh) {\n",
" Bokeh.set_log_level(\"info\");\n",
" },\n",
" function(Bokeh) {\n",
" \n",
" \n",
" }\n",
" ];\n",
"\n",
" function run_inline_js() {\n",
" \n",
" if (root.Bokeh !== undefined || force === true) {\n",
" \n",
" for (var i = 0; i < inline_js.length; i++) {\n",
" inline_js[i].call(root, root.Bokeh);\n",
" }\n",
" if (force === true) {\n",
" display_loaded();\n",
" }} else if (Date.now() < root._bokeh_timeout) {\n",
" setTimeout(run_inline_js, 100);\n",
" } else if (!root._bokeh_failed_load) {\n",
" console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n",
" root._bokeh_failed_load = true;\n",
" } else if (force !== true) {\n",
" var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n",
" cell.output_area.append_execute_result(NB_LOAD_WARNING)\n",
" }\n",
"\n",
" }\n",
"\n",
" if (root._bokeh_is_loading === 0) {\n",
" console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n",
" run_inline_js();\n",
" } else {\n",
" load_libs(css_urls, js_urls, function() {\n",
" console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n",
" run_inline_js();\n",
" });\n",
" }\n",
"}(window));"
],
"application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };var element = document.getElementById(\"1001\");\n if (element == null) {\n console.error(\"Bokeh: ERROR: autoload.js configured with elementid '1001' but no matching script tag was found. \")\n return false;\n }\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n \n var js_urls = [\"https://cdn.pydata.org/bokeh/release/bokeh-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-widgets-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-tables-1.4.0.min.js\", \"https://cdn.pydata.org/bokeh/release/bokeh-gl-1.4.0.min.js\"];\n var css_urls = [];\n \n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n function(Bokeh) {\n \n \n }\n ];\n\n function run_inline_js() {\n \n if (root.Bokeh !== undefined || force === true) {\n \n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));"
},
"metadata": {},
"output_type": "display_data"
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You should also adjust all the path constants to point at the relevant locations for you locally"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#MODEL_RUN_PATH = \"libritts_360-half-October-31-2019_04+54PM-19d2f5f/\"\n",
"MODEL_RUN_PATH = \"libritts_360-half-September-28-2019_10+46AM-8565c50/\"\n",
=======
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL_RUN_PATH = \"/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/libritts_360-half-October-31-2019_04+54PM-19d2f5f/\"\n",
>>>>>>> dev
"MODEL_PATH = MODEL_RUN_PATH + \"best_model.pth.tar\"\n",
"CONFIG_PATH = MODEL_RUN_PATH + \"config.json\"\n",
"\n",
"# My single speaker locations\n",
"#EMBED_PATH = \"/home/neil/main/Projects/TTS3/embeddings/neil14/\"\n",
"#AUDIO_PATH = \"/home/neil/data/Projects/NeilTTS/neil14/wavs/\"\n",
"\n",
"# My multi speaker locations\n",
"EMBED_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360-embed_128/\"\n",
<<<<<<< HEAD
"AUDIO_PATH = \"datasets/LibriTTS/test-clean/\""
=======
"AUDIO_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360/\""
>>>>>>> dev
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"best_model.pth.tar\r\n",
"config.json\r\n",
"events.out.tfevents.1569660396.erogol-desktop\r\n"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"!ls -1 $MODEL_RUN_PATH"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Setting up Audio Processor...\n",
" | > sample_rate:16000\n",
" | > num_mels:40\n",
" | > min_level_db:-100\n",
" | > frame_shift_ms:12.5\n",
" | > frame_length_ms:50\n",
" | > ref_level_db:20\n",
" | > fft_size:1024\n",
" | > power:None\n",
" | > preemphasis:0.98\n",
" | > griffin_lim_iters:None\n",
" | > signal_norm:True\n",
" | > symmetric_norm:True\n",
" | > mel_fmin:0\n",
" | > mel_fmax:8000.0\n",
" | > spec_gain:20.0\n",
" | > stft_pad_mode:reflect\n",
" | > max_norm:4.0\n",
" | > clip_norm:True\n",
" | > do_trim_silence:False\n",
" | > trim_db:60\n",
" | > do_sound_norm:False\n",
" | > stats_path:None\n",
" | > hop_length:200\n",
" | > win_length:800\n"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"CONFIG = load_config(CONFIG_PATH)\n",
"ap = AudioProcessor(**CONFIG['audio'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bring in the embeddings created by **compute_embeddings.py**"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Embeddings found: 0\n"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"embed_files = glob.glob(EMBED_PATH+\"/**/*.npy\", recursive=True)\n",
"print(f'Embeddings found: {len(embed_files)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that we did indeed find an embedding"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 8,
"metadata": {},
"outputs": [
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-f67d64b1abbb>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0membed_files\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"embed_files[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Process the speakers\n",
"\n",
"Assumes count of **speaker_paths** corresponds to number of speakers (so a corpus in just one directory would be treated like a single speaker and the multiple directories of LibriTTS are treated as distinct speakers)"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Speaker count: 0\n"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"speaker_paths = list(set([os.path.dirname(os.path.dirname(embed_file)) for embed_file in embed_files]))\n",
"speaker_to_utter = {}\n",
"for embed_file in embed_files:\n",
" speaker_path = os.path.dirname(os.path.dirname(embed_file))\n",
" try:\n",
" speaker_to_utter[speaker_path].append(embed_file)\n",
" except:\n",
" speaker_to_utter[speaker_path]=[embed_file]\n",
"print(f'Speaker count: {len(speaker_paths)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up the embeddings\n",
"\n",
"Adjust the number of speakers to select and the number of utterances from each speaker and they will be randomly sampled from the corpus"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 11,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "'a' cannot be empty unless no samples are taken",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-11-aabd2a5031f8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mspeaker_idxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchoice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspeaker_paths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_speakers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mspeaker_num\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspeaker_idx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspeaker_idxs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mmtrand.pyx\u001b[0m in \u001b[0;36mnumpy.random.mtrand.RandomState.choice\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: 'a' cannot be empty unless no samples are taken"
]
}
],
"source": [
"ttsembeds = []\n",
=======
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeds = []\n",
>>>>>>> dev
"labels = []\n",
"locations = []\n",
"\n",
"# single speaker \n",
"#num_speakers = 1\n",
"#num_utters = 1000\n",
"\n",
"# multi speaker\n",
"num_speakers = 10\n",
"num_utters = 20\n",
"\n",
"\n",
"speaker_idxs = np.random.choice(range(len(speaker_paths)), num_speakers, replace=False )\n",
"\n",
"for speaker_num, speaker_idx in enumerate(speaker_idxs):\n",
" speaker_path = speaker_paths[speaker_idx]\n",
" speakers_utter = speaker_to_utter[speaker_path]\n",
" utter_idxs = np.random.randint(0, len(speakers_utter) , num_utters)\n",
" for utter_idx in utter_idxs:\n",
" embed_path = speaker_to_utter[speaker_path][utter_idx]\n",
" embed = np.load(embed_path)\n",
" embeds.append(embed)\n",
" labels.append(str(speaker_num))\n",
<<<<<<< HEAD
" #locations.append(embed_path.replace(EMBED_PATH, '').replace('.npy','.wav'))\n",
=======
" locations.append(embed_path.replace(EMBED_PATH, '').replace('.npy','.wav'))\n",
>>>>>>> dev
"embeds = np.concatenate(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load embeddings with UMAP"
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 12,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "module 'umap' has no attribute 'UMAP'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-12-32709017067f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mumap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mUMAP\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprojection\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membeds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: module 'umap' has no attribute 'UMAP'"
]
}
],
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> dev
"source": [
"model = umap.UMAP()\n",
"projection = model.fit_transform(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interactively charting the data in Bokeh\n",
"\n",
"Set up various details for Bokeh to plot the data\n",
"\n",
"You can use the regular Bokeh [tools](http://docs.bokeh.org/en/1.4.0/docs/user_guide/tools.html?highlight=tools) to explore the data, with reset setting it back to normal\n",
"\n",
"Once you have started the local server (see cell below) you can then click on plotted points which will open a tab to play the audio for that point, enabling easy exploration of your corpus\n",
"\n",
"File location in the tooltip is given relative to **AUDIO_PATH**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"source_wav_stems = ColumnDataSource(\n",
" data=dict(\n",
" x = projection.T[0].tolist(),\n",
" y = projection.T[1].tolist(),\n",
" desc=locations,\n",
" label=labels\n",
" )\n",
" )\n",
"\n",
"hover = HoverTool(\n",
" tooltips=[\n",
" (\"file\", \"@desc\"),\n",
" (\"speaker\", \"@label\"),\n",
" ]\n",
" )\n",
"\n",
"# optionally consider adding these to the tooltips if you want additional detail\n",
"# for the coordinates: (\"(x,y)\", \"($x, $y)\"),\n",
"# for the index of the embedding / wav file: (\"index\", \"$index\"),\n",
"\n",
"factors = list(set(labels))\n",
"pal_size = max(len(factors), 3)\n",
"pal = Category10[pal_size]\n",
"\n",
"p = figure(plot_width=600, plot_height=400, tools=[hover,BoxZoomTool(), ResetTool(), TapTool()])\n",
"\n",
"\n",
"p.circle('x', 'y', source=source_wav_stems, color=factor_cmap('label', palette=pal, factors=factors),)\n",
"\n",
"url = \"http://localhost:8000/@desc\"\n",
"taptool = p.select(type=TapTool)\n",
"taptool.callback = OpenURL(url=url)\n",
"\n",
"show(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Local server to serve wav files from corpus\n",
"\n",
"This is required so that when you click on a data point the hyperlink associated with it will be served the file locally.\n",
"\n",
"There are other ways to serve this if you prefer and you can also run the commands manually on the command line\n",
"\n",
"The server will continue to run until stopped. To stop it simply interupt the kernel (ie square button or under Kernel menu)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%cd $AUDIO_PATH\n",
"%pwd\n",
"!python -m http.server"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
<<<<<<< HEAD
"version": "3.8.5"
=======
"version": "3.7.4"
>>>>>>> dev
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|