File size: 4,532 Bytes
0b332c6 37ae2c0 0b332c6 37ae2c0 0b332c6 37ae2c0 0b332c6 77c4a1f 0b332c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
pipeline_tag: sentence-similarity
language: fr
license: mit
datasets:
- unicamp-dl/mmarco
metrics:
- recall
tags:
- passage-retrieval
library_name: transformers
base_model: almanach/camembert-base
model-index:
- name: spladev2-camembert-base-mmarcoFR
results:
- task:
type: sentence-similarity
name: Passage Retrieval
dataset:
type: unicamp-dl/mmarco
name: mMARCO-fr
config: french
split: validation
metrics:
- type: recall_at_1000
name: Recall@1000
value: 89.86
- type: recall_at_500
name: Recall@500
value: 85.96
- type: recall_at_100
name: Recall@100
value: 73.94
- type: recall_at_10
name: Recall@10
value: 46.33
- type: map_at_10
name: MAP@10
value: 24.15
- type: ndcg_at_10
name: nDCG@10
value: 29.58
- type: mrr_at_10
name: MRR@10
value: 24.68
---
# spladev2-camembert-base-mmarcoFR
This is a [SPLADE-max](https://doi.org/10.48550/arXiv.2109.10086) model for **French** that can be used for semantic search. The model maps queries and passages to
32k-dimensional sparse vectors which are used to compute relevance through cosine similarity.
## Usage
Start by installing the [library](https://huggingface.co/docs/transformers): `pip install -U transformers`. Then, you can use the model like this:
```python
import torch
from torch.nn.functional import relu, normalize
from transformers import AutoTokenizer, AutoModel
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/spladev2-camembert-base-mmarcoFR')
model = AutoModel.from_pretrained('antoinelouis/spladev2-camembert-base-mmarcoFR')
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
q_output = model(**q_input)
p_output = model(**p_input)
q_activations = torch.amax(torch.log1p(relu(q_output.logits * q_input['attention_mask'].unsqueeze(-1))), dim=1)
p_activations = torch.amax(torch.log1p(relu(p_output.logits * p_input['attention_mask'].unsqueeze(-1))), dim=1)
q_activations = normalize(q_activations, p=2, dim=1)
p_activations = normalize(p_activations, p=2, dim=1)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
```
## Evaluation
The model is evaluated on the smaller development set of [mMARCO-fr](https://ir-datasets.com/mmarco.html#mmarco/v2/fr/), which consists of 6,980 queries for a corpus of
8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k).
To see how it compares to other neural retrievers in French, check out the [*DécouvrIR*](https://huggingface.co/spaces/antoinelouis/decouvrir) leaderboard.
## Training
#### Data
The model is trained on the French training samples of the [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) dataset, a multilingual machine-translated version of MS MARCO that
contains 8.8M passages and 539K training queries. We sample 12.8M (q, p+, p-) triples from the official ~39.8M [training triples](https://microsoft.github.io/msmarco/Datasets.html#passage-ranking-dataset)
with BM25 negatives.
#### Implementation
The model is initialized from the [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) checkpoint and optimized via a combination of the InfoNCE
ranking loss with a temperature of 0.05 and the FLOPS regularization loss with quadratic increase of lambda until step 33k after which it remains constant with lambda_q=3e-4
and lambda_d=1e-4. The model is fine-tuned on one 80GB NVIDIA H100 GPU for 100k steps using the AdamW optimizer with a batch size of 128, a peak learning rate
of 2e-5 with warm up along the first 4000 steps and linear scheduling. The maximum sequence lengths for questions and passages length were fixed to 32 and 128 tokens.
Relevance scores are computed with the cosine similarity.
## Citation
```bibtex
@online{louis2024decouvrir,
author = 'Antoine Louis',
title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
publisher = 'Hugging Face',
month = 'mar',
year = '2024',
url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
}
``` |