File size: 2,014 Bytes
cb16512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
{
    "query_token_id": "[unused0]",
    "doc_token_id": "[unused1]",
    "query_token": "[Q]",
    "doc_token": "[D]",
    "ncells": null,
    "centroid_score_threshold": null,
    "ndocs": null,
    "load_index_with_mmap": false,
    "index_path": null,
    "nbits": 1,
    "kmeans_niters": 4,
    "resume": false,
    "similarity": "cosine",
    "bsize": 64,
    "accumsteps": 1,
    "lr": 3e-6,
    "maxsteps": 200000,
    "save_every": null,
    "warmup": null,
    "warmup_bert": null,
    "relu": false,
    "nway": 2,
    "use_ib_negatives": true,
    "reranker": false,
    "distillation_alpha": 1.0,
    "ignore_scores": true,
    "model_name": "camembert-base",
    "query_maxlen": 32,
    "attend_to_mask_tokens": true,
    "interaction": "colbert",
    "dim": 128,
    "doc_maxlen": 256,
    "mask_punctuation": true,
    "checkpoint": "camembert-base",
    "triples": "data\/mmarco\/triples.train.ids.small.jsonl",
    "collection": "data\/mmarco\/french_collection.tsv",
    "queries": "data\/mmarco\/french_queries.train.tsv",
    "index_name": null,
    "overwrite": false,
    "root": "output\/training",
    "experiment": "mmarco",
    "index_root": null,
    "name": "2023-12\/21\/15.44.53",
    "rank": 0,
    "nranks": 1,
    "amp": true,
    "gpus": 1,
    "meta": {
        "hostname": "jupyterlab-gpu-2-4-jgfkq",
        "git_branch": "main",
        "git_hash": "49363ffb7f6ca212ff2780edb86b485d0379e836",
        "git_commit_datetime": "2023-12-21 19:32:07+01:00",
        "current_datetime": "Dec 22, 2023 ; 12:53PM CET (+0100)",
        "cmd": "src\/training\/colbertv1.py --dataset mmarco --language french --nway 2 --model_name camembert-base --dim 128 --similarity cosine --doc_maxlen 256 --query_maxlen 32 --mask_punctuation --attend_to_mask_tokens --maxsteps 200000 --lr 3e-6 --bsize 64 --accumsteps 1 --use_ib_negatives --ignore_scores --distillation_alpha 1.0 --nbits 1 --kmeans_niters 4 --data_dir data --output_dir output\/training",
        "version": "colbert-v0.4"
    }
}