File size: 3,303 Bytes
44cdab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: gemma
base_model: google/gemma-2-9b
tags:
- generated_from_trainer
model-index:
- name: magnum-v3-9b-customgemma2
results: []
---
### exl2 quant (measurement.json in main branch)
---
### check revisions for quants
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: google/gemma-2-9b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/stheno-filtered-v1.1
type: customgemma2
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: customgemma2
- path: anthracite-org/nopm_claude_writing_fixed
type: customgemma2
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: customgemma2
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: customgemma2
shuffle_merged_datasets: true
default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: magnum-v3-9b-data-customgemma2
val_set_size: 0.0
output_dir: ./magnum-v3-9b-customgemma2
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: magnum-9b
wandb_entity:
wandb_watch:
wandb_name: attempt-03-customgemma2
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000006
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
eager_attention: true
warmup_steps: 50
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# magnum-v3-9b-customgemma2
This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|