File size: 15,897 Bytes
6f290c1 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b3dedb7bd90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b3dedb7be20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b3dedb7beb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b3dedb7bf40>", "_build": "<function ActorCriticPolicy._build at 0x7b3dedb84040>", "forward": "<function ActorCriticPolicy.forward at 0x7b3dedb840d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b3dedb84160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b3dedb841f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b3dedb84280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b3dedb84310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b3dedb843a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b3dedb84430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b3dedb27200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722168826047465822, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAM2QR72PTme6XMK/OwC74TgyJZA6KA1pugAAgD8AAIA/AEfpvMP1azd/YLU666BuNErTobr9RY8zAACAPwAAgD8acQU99ixVujtLSrq+4wq28NYzOva0YzkAAIA/AACAPzMjJbu4pva5DPK8uzJzqjWHpU8626wWtQAAgD8AAIA/AAYAPRTChLqGdCY5kh+vNU+I/zoGwz64AACAPwAAgD+mQME9XMNUulpRG7ox7Ag1HkhCO+H7MzkAAIA/AACAP826Sjx70qa6SpSDuT6X5rXPLYK6QOQlOAAAgD8AAIA/RsdiPl+4QT+qF7E8X+SyvnRCaD46vtu9AAAAAAAAAACamYy87PHxufO+GbrBTqa1upcJO7LiMzkAAIA/AACAP03Klj1cv2q6FsxpvJcl17jRRP66nU5COAAAgD8AAIA/Gn87vVzvdrplNby7euGHuIOipTsw+FI4AACAPwAAgD/mHgM9uCbvueElFLyd0CA3b0iBOtG/lLYAAIA/AACAP83aJrxcG1G6UEnPu1GVAL1HuW84O3fhvQAAAAAAAIA/ANzEu3uSgLrSFs25cr0VObVvVruLScs4AACAPwAAgD8azCm9ewz6upaVFLuJsrO81d4BPGk7nD0AAIA/AACAPwCAu7ppQQY/+hwKvpoSV77wz6K9klOnvQAAAAAAAAAAAG0aPfY4Q7rovWm6OePPNYR1BTttMYY5AACAPwAAgD8AzBS8rn+kOUmtx7xn9D885C5Iu4Pk1DwAAAAAAAAAANo+gz3sGZG58mXnu3DNh7xMwGW6c/FtPQAAgD8AAAAAAINtPbgG/bk+qaK6E9TxtaOQXzsGx705AACAPwAAgD9d/pu+5ut0PwK/lb4hP/S+ZZCuvhNwpTwAAAAAAAAAABr7T70fZYO5yuL0u5fDMbnUf/+70sKlOAAAgD8AAIA/c6mdvSlYUronhxC6/AWuNTWgyTv6SCg5AACAPwAAgD8AQoo8KQgDurYHtTwUQoO3S2PAuhITfLYAAIA/AACAP7NcJj42mzk/ldHkPawzxL6nSD4+ag0rugAAAAAAAAAAgPIXvbjG1rlaWc475CnKO9TIBTzzZLy8AACAPwAAgD8AVQo9NkqvP/e/MD9VR9i+IiskvXTAP74AAAAAAAAAADOav73DPyI7sEx/vocVE776xpK9tOeSPwAAgD8AAAAA812VvVzDJLruYhU7tyQotoh0zbquzC26AACAPwAAgD/tiCg+GT/KPnWmkL4+m6O+fVkFvXgEHj0AAAAAAAAAAGaUHj17CIO6Gu0xvLzdQ7adVms7U4+xNQAAgD8AAIA/c1T1Peq/2j74amG+bOdyvthoTTzR9q29AAAAAAAAAABm3gm9uFbsuSq2pjozFjq008cquLOkxbkAAIA/AACAP4BLGb3DhUa6wNkpNwG6fTWwxoC78JhLtgAAgD8AAIA/GmEYvQ/GKrxLjti6tkapPEQLkb3Jm4o9AACAPwAAgD+zy2A9XMsHuhIKEzy+UQY2FtKCOrLU+TQAAIA/AACAP03007328Ay6MzJqO9Z/hThNqg+7ixUOugAAgD8AAIA/AK56vMMtF7pw9Nm6YK+Jtvoz8js7r/85AACAPwAAgD9NfJW9w3lwulbi3jpbMI81jiOtOkMGdDQAAIA/AACAP8149zxcGyq6VTW6OpV9CDYBPAA6nsLYuQAAgD8AAIA/5o4KvWOaWz9AQuo4qrDeviUJ/L0jQLs5AAAAAAAAAADN3hU9FOKFuoPCdbpiEwW2NJ8eO4b7ijkAAIA/AACAPzPmCj7fu7I+BhdDvjqYm74o1F88C825vQAAAAAAAAAAWmwiPn0ihj42Ujy+t/YivopQNL0eb5K9AAAAAAAAAAAA9Bi8SPekuuwdI7q6mRq2KsPCOU5fOjkAAIA/AACAP2YuTDyu34W6m/qVuXR2JjZ1vPQ6OdWrOAAAgD8AAIA/ZjO7vDs6l7waWKm8E84zPf8xA7y0dhC8AACAPwAAgD/mSQU9ebCeP8/kKT4XygO/kZ5ZPC00DL0AAAAAAAAAAI0Pob3cfUY/9mMqvNDmx75tgpS9ufYMPQAAAAAAAAAA5tpGPY82WLoCco27RmK/OYD8ijqr1wQ6AACAPwAAgD+zhBS9exqSusUo/LpnU608YsK0O9hilb0AAIA/AACAP5plN70UBqe6F0IcuxWni7VP6v066L0xOgAAgD8AAIA/TXqyPcOpf7oG2fK7s5OqOBwmAjq1CeE5AACAPwAAgD+aar884QH5PVlCHr3XG0K+NvcSvU1btjwAAAAAAAAAAM2qhLxIeYC6LuJLO9G06DVbPzK7AtxpugAAgD8AAIA/TSJCvXsaobr21lm4vDPEMbJ4kLog43k3AACAPwAAgD+amqW89nxcunaH5DirETa1qC3nucdeKLQAAIA/AACAP2a8s7wp8F+6oaYRPMtj2rjnecy6Q5fQtwAAgD8AAIA/M1PAPI8mbrpLQ3c7Y8YNOE6sXrriJfW2AACAPwAAgD+aw/q8KZAXukkRm7sBGfa14E3aOnCXXjUAAIA/AACAP2b0Kb0coZ8/sSAGvvBR7b5Mmuy9HVbCvQAAAAAAAAAAml2Au7he8Lnu/BM60e+9tcGXGju0BCq5AACAPwAAgD8w8oE+gfs0P8rYlL2EBce+A8RVPsZxyb0AAAAAAAAAADrnEb6cZhq8EgTWvbf3dLznw409ArhLPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQbpGnXNC+MAWyUTegDjAF0lEdAqaXXPeHi33V9lChoBkdAYin60IC2dGgHTegDaAhHQKmngfHxSYR1fZQoaAZHQGSpqrJbMX9oB03oA2gIR0Cpqrz9sJpndX2UKGgGR0BjU945cTrWaAdN6ANoCEdAqa1RLmITG3V9lChoBkdAX6+F9KEnLWgHTegDaAhHQKmvBvQ4S6F1fZQoaAZHQGJzsenyd4FoB03oA2gIR0CpsipbUwztdX2UKGgGR0BhIIaLn9vTaAdN6ANoCEdAqbZe6ClJpXV9lChoBkdAT/G3DvVmSWgHS61oCEdAqbx4jSofjnV9lChoBkdAZl1XT3IuG2gHTegDaAhHQKm+HyJ9Aop1fZQoaAZHQF0gKFqSHM5oB03oA2gIR0Cpw2vbO/tZdX2UKGgGR0BZn+lwcYIjaAdN6ANoCEdAqcOzO3UhFHV9lChoBkdAYFM8lolD4WgHTegDaAhHQKnF+4J/oaF1fZQoaAZHQGcSq9PDYRNoB03oA2gIR0CpxxnEl3QldX2UKGgGR0BgxtKVY6n0aAdN6ANoCEdAqckbUutfX3V9lChoBkdAZrsk2xY7rGgHTegDaAhHQKnKEs1baAZ1fZQoaAZHQFsD2TgVGkNoB03oA2gIR0Cpyi9QGfPHdX2UKGgGR0BiYAJgLJCCaAdN6ANoCEdAqcsWXeFcp3V9lChoBkdAZIaEUTL4e2gHTegDaAhHQKnLNeSB9Th1fZQoaAZHQGBLabvw3HdoB03oA2gIR0CpzEko4MnadX2UKGgGR0BjriAFxGUfaAdN6ANoCEdAqdFKkAPuonV9lChoBkdAYoF9Brvb5GgHTegDaAhHQKnSpvAoG6h1fZQoaAZHQFxULxI8QqZoB03oA2gIR0Cp06rFGXoldX2UKGgGR0Be5CHuZ1FIaAdN6ANoCEdAqdd8bBGhEnV9lChoBkdAYj9MN+b3GmgHTegDaAhHQKnZuzLwF1V1fZQoaAZHQGbfaYE4ecRoB03oA2gIR0Cp3bFVcUuddX2UKGgGR0BjT+0Z3s5XaAdN6ANoCEdAqd3ysMiKSHV9lChoBkdAZMT0lJHy3GgHTegDaAhHQKngLechC+l1fZQoaAZHQGNiAhje9BdoB03oA2gIR0Cp4DCEQGwBdX2UKGgGR0BiLThP0qYraAdN6ANoCEdAqeGIddVvM3V9lChoBkdAThhjawljVmgHS5poCEdAqeILIV/MGHV9lChoBkdAYcbkkrwvx2gHTegDaAhHQKnmLGEPDpF1fZQoaAZHQGMFUAtFrmBoB03oA2gIR0Cp5oN29tdidX2UKGgGR0BkRVe6Zpi7aAdN6ANoCEdAqeh8+1SflXV9lChoBkdAX9Q+wC8vmGgHTegDaAhHQKnt245Lh751fZQoaAZHQGT9rkS26TZoB03oA2gIR0Cp74XKr7wbdX2UKGgGR0BemIPkJa7maAdN6ANoCEdAqfDFQQ+UyHV9lChoBkdAYZO6/Zdv9GgHTegDaAhHQKnw4ecx0uF1fZQoaAZHQGZsHcDbJwNoB03oA2gIR0Cp8XIrOJLvdX2UKGgGR0BiSxfjS5RTaAdN6ANoCEdAqfrxc3VConV9lChoBkdAWppt2s7uD2gHTegDaAhHQKn9NWWhRIl1fZQoaAZHQF8nJWNm16VoB03oA2gIR0Cp/ZE9U0emdX2UKGgGR0BmGqjgydnTaAdN6ANoCEdAqf2TeoDPnnV9lChoBkdAYJBoi9qUNmgHTegDaAhHQKoF1RSgoPV1fZQoaAZHQF2TXVbzK9xoB03oA2gIR0CqBjHgHeJpdX2UKGgGR0Bfm8hxHXmOaAdN6ANoCEdAqgah6F/QSnV9lChoBkdAZylwT/Q0GmgHTegDaAhHQKoHbDYRNAV1fZQoaAZHQGcCmLcbiqBoB03oA2gIR0CqCBCB5HEudX2UKGgGR0BhFidxyXD4aAdN6ANoCEdAqggSMm4RVnV9lChoBkdAYikpHZsbemgHTegDaAhHQKoJz96Tnq51fZQoaAZHQF2Abr1M/QloB03oA2gIR0CqECvQnhKldX2UKGgGR0BlVwFV1fVqaAdN6ANoCEdAqhVq8jAzpHV9lChoBkdAZUI43m3fAWgHTegDaAhHQKobipfhMrV1fZQoaAZHQGJOSFGoaUBoB03oA2gIR0CqG7Vjy4FzdX2UKGgGR0BbPbaufVZtaAdN6ANoCEdAqh/qSV4X43V9lChoBkdAY26SeyzHCGgHTegDaAhHQKohzM8ox591fZQoaAZHQGP4DUVi4KBoB03oA2gIR0CqIeI/Z/TcdX2UKGgGR0A9flt0mtyQaAdLx2gIR0CqI1PsRg7YdX2UKGgGR0Bigvlp48lpaAdN6ANoCEdAqiQWNHYpUnV9lChoBkdAZudt4RmK7GgHTegDaAhHQKoknIClrM11fZQoaAZHQFrhH7gsK9hoB03oA2gIR0CqKGJNbkfcdX2UKGgGR0BiRkGkep4saAdN6ANoCEdAqiuglKK51HV9lChoBkdAaXzNqQA+6mgHTegDaAhHQKouCLkS26V1fZQoaAZHQGQTYtHxz7xoB03oA2gIR0CqMTq/mDDkdX2UKGgGR0BmD6WLP2PDaAdN6ANoCEdAqjLeBWgezXV9lChoBkdAYPeGEf1YhmgHTegDaAhHQKo1qt8uzyB1fZQoaAZHQGE3nZsbedloB03oA2gIR0CqOOJDVpbmdX2UKGgGR0BkTZnOB19waAdN6ANoCEdAqjs2v6j323V9lChoBkdAZq1mDDjzZ2gHTegDaAhHQKo8Nz5GjKx1fZQoaAZHQGXPqO1fE4xoB03oA2gIR0CqPp9If8uSdX2UKGgGR0BknCv7m+0xaAdN6ANoCEdAqkDHMnqmj3V9lChoBkdAZ1yvRJEpiWgHTegDaAhHQKpCNvgm7at1fZQoaAZHQGV3FAVwgkloB03oA2gIR0CqRVHuiN83dX2UKGgGR0BhdnVqesgdaAdN6ANoCEdAqkrML8aXKXV9lChoBkdAKtEQXhwVCWgHS8JoCEdAqk9g00m+kHV9lChoBkdAYknJ5mh/RWgHTegDaAhHQKpRUxIJ7cB1fZQoaAZHQFwvVxS5y2hoB03oA2gIR0CqUpRhc7hfdX2UKGgGR0Bk8wphF3INaAdN6ANoCEdAqlYFKyv9tXV9lChoBkdAY7zDSgGr0mgHTegDaAhHQKpWNcC5mRN1fZQoaAZHQGOUgdwNsnBoB03oA2gIR0CqV73ZXdTHdX2UKGgGR0BmFw02tMfzaAdN6ANoCEdAqlibTH80lHV9lChoBkdAWpQBeXzDoGgHTegDaAhHQKpaPbJOnEV1fZQoaAZHQGKryksSTQpoB03oA2gIR0CqWyq1XvH+dX2UKGgGR0BkCfUQTVUdaAdN6ANoCEdAqltK7ZnL73V9lChoBkdAZhc2iL2pQ2gHTegDaAhHQKpcL9vS+g11fZQoaAZHQFmPjcVQAMloB03oA2gIR0CqXaVIZqEfdX2UKGgGR0BGIlPznRsuaAdLnWgIR0CqYQN8/lhgdX2UKGgGR0BjfxpDeCTVaAdN6ANoCEdAqmQX7m+0xHV9lChoBkdAYDb/4qPOp2gHTegDaAhHQKpl95xBE8d1fZQoaAZHQF9cS8rZrYZoB03oA2gIR0CqZ00YKpkxdX2UKGgGR0BiJhvNu+AVaAdN6ANoCEdAqmtnXqZ+hHV9lChoBkdAZSVBzmwJPmgHTegDaAhHQKptbzq8lHB1fZQoaAZHQF/vdhy8zyloB03oA2gIR0Cqb/ALiMo+dX2UKGgGR0BaOJP69CeFaAdN6ANoCEdAqnAXtdAxBXV9lChoBkdAZazhw2l2vGgHTegDaAhHQKpxix59mYl1fZQoaAZHQGSYim2sq8VoB03oA2gIR0CqcYwSBbwCdX2UKGgGR0BdzBwZOzppaAdN6ANoCEdAqnJUsasIV3V9lChoBkdAYgPYkmhM8GgHTegDaAhHQKpy0WRigCh1fZQoaAZHQGGgn2h7E51oB03oA2gIR0Cqd3xKxs2vdX2UKGgGR0Bi9BrLyMDPaAdN6ANoCEdAqnfZoduHe3V9lChoBkdAZJBMfzSThmgHTegDaAhHQKp6GAuIyj51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |