File size: 2,959 Bytes
a1618a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain

This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1385
- Accuracy: 0.2369
- F1: 0.1919
- Precision: 0.1087
- Recall: 0.8148
- Mae: 0.7631
- Tn: 1279
- Fp: 6491
- Fn: 180
- Tp: 792

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall | Mae    | Tn   | Fp   | Fn  | Tp  |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|:----:|:----:|:---:|:---:|
| 0.2166        | 1.0   | 2233  | 1.2875          | 0.3377   | 0.2025 | 0.1169    | 0.7562 | 0.6623 | 2217 | 5553 | 237 | 735 |
| 0.2068        | 2.0   | 4466  | 1.8399          | 0.3141   | 0.2154 | 0.1234    | 0.8467 | 0.6859 | 1923 | 5847 | 149 | 823 |
| 0.2015        | 3.0   | 6699  | 1.5430          | 0.3543   | 0.2053 | 0.1189    | 0.75   | 0.6457 | 2368 | 5402 | 243 | 729 |
| 0.1739        | 4.0   | 8932  | 1.8406          | 0.2815   | 0.1911 | 0.1092    | 0.7634 | 0.7185 | 1719 | 6051 | 230 | 742 |
| 0.163         | 5.0   | 11165 | 2.0274          | 0.2170   | 0.1957 | 0.1105    | 0.8570 | 0.7830 | 1064 | 6706 | 139 | 833 |
| 0.1481        | 6.0   | 13398 | 1.6407          | 0.2467   | 0.1931 | 0.1096    | 0.8107 | 0.7533 | 1369 | 6401 | 184 | 788 |
| 0.1334        | 7.0   | 15631 | 3.0800          | 0.1875   | 0.1953 | 0.1097    | 0.8868 | 0.8125 | 777  | 6993 | 110 | 862 |
| 0.12          | 8.0   | 17864 | 2.5311          | 0.2183   | 0.1962 | 0.1108    | 0.8580 | 0.7817 | 1074 | 6696 | 138 | 834 |
| 0.1104        | 9.0   | 20097 | 2.9522          | 0.2135   | 0.1935 | 0.1092    | 0.8488 | 0.7865 | 1041 | 6729 | 147 | 825 |
| 0.0938        | 10.0  | 22330 | 3.1385          | 0.2369   | 0.1919 | 0.1087    | 0.8148 | 0.7631 | 1279 | 6491 | 180 | 792 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1