File size: 2,959 Bytes
a1618a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased-misogyny-sexism-decay0.01-fr-outofdomain
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1385
- Accuracy: 0.2369
- F1: 0.1919
- Precision: 0.1087
- Recall: 0.8148
- Mae: 0.7631
- Tn: 1279
- Fp: 6491
- Fn: 180
- Tp: 792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | Tn | Fp | Fn | Tp |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|:----:|:----:|:---:|:---:|
| 0.2166 | 1.0 | 2233 | 1.2875 | 0.3377 | 0.2025 | 0.1169 | 0.7562 | 0.6623 | 2217 | 5553 | 237 | 735 |
| 0.2068 | 2.0 | 4466 | 1.8399 | 0.3141 | 0.2154 | 0.1234 | 0.8467 | 0.6859 | 1923 | 5847 | 149 | 823 |
| 0.2015 | 3.0 | 6699 | 1.5430 | 0.3543 | 0.2053 | 0.1189 | 0.75 | 0.6457 | 2368 | 5402 | 243 | 729 |
| 0.1739 | 4.0 | 8932 | 1.8406 | 0.2815 | 0.1911 | 0.1092 | 0.7634 | 0.7185 | 1719 | 6051 | 230 | 742 |
| 0.163 | 5.0 | 11165 | 2.0274 | 0.2170 | 0.1957 | 0.1105 | 0.8570 | 0.7830 | 1064 | 6706 | 139 | 833 |
| 0.1481 | 6.0 | 13398 | 1.6407 | 0.2467 | 0.1931 | 0.1096 | 0.8107 | 0.7533 | 1369 | 6401 | 184 | 788 |
| 0.1334 | 7.0 | 15631 | 3.0800 | 0.1875 | 0.1953 | 0.1097 | 0.8868 | 0.8125 | 777 | 6993 | 110 | 862 |
| 0.12 | 8.0 | 17864 | 2.5311 | 0.2183 | 0.1962 | 0.1108 | 0.8580 | 0.7817 | 1074 | 6696 | 138 | 834 |
| 0.1104 | 9.0 | 20097 | 2.9522 | 0.2135 | 0.1935 | 0.1092 | 0.8488 | 0.7865 | 1041 | 6729 | 147 | 825 |
| 0.0938 | 10.0 | 22330 | 3.1385 | 0.2369 | 0.1919 | 0.1087 | 0.8148 | 0.7631 | 1279 | 6491 | 180 | 792 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|