File size: 14,389 Bytes
e0b3ed9
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d3b07a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d3b07a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d3b07a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d3b07a290>", "_build": "<function ActorCriticPolicy._build at 0x7f7d3b07a320>", "forward": "<function ActorCriticPolicy.forward at 0x7f7d3b07a3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d3b07a440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7d3b07a4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d3b07a560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d3b07a5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d3b07a680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7d3b0c9630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652262567.3462296, "learning_rate": 0.0003, "tensorboard_log": "runs/21l49xf0", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPqdz24dq65Yr6QOi8U4jUTWGM7IqWouQAAgD8AAIA/M0NDPvalDLxFXdM6l4eAuARmX72rGfm5AACAPwAAgD8zEYO9jw4fPeGnxj3E0wq+PpBru0abyzsAAAAAAAAAAM1kyryumaG6n369O8IL2Tc4M6+69oSoNQAAgD8AAIA/GtxBPbh+vrmTALc7NPZeOGEPhDuGkFO4AACAPwAAgD8aYdw9pHAkOJZeyztmV5c2Macru4LVmjUAAIA/AACAP55QkL6RXwQ/lrrdPYo8Vb6XyLi8E/VWPQAAAAAAAAAAGkI4PZWuTz8r0XK9m2dbvoZ0sTuL01u9AAAAAAAAAADNnMk6w81eukLuBjxj9rK2A7Qfu5GKsrUAAIA/AACAPw029r2wd4s/kH6vvjU60r5CpIG9/fuNvQAAAAAAAAAAmjEIvXa+rD+Jsai+fmCxviAEi7w7+ge+AAAAAAAAAACzZNo9L4SvPkDS8L0bWj++sg4hvQa3aDwAAAAAAAAAAJqTfryFI/e5q7AguhvujrYqY6o7f388OQAAgD8AAIA/jU/MvY9qbLrqfKA3d8HaMBV6gLtCh7m2AACAPwAAgD8m+cC9bC+bP/IoFb/DnxG/c7khPF82vL0AAAAAAAAAADP6wj2uOYy6Ngvouk9mG7ZqfEQ7WoEGOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2q1lMhwrYECUhpRSlIwBbJRN6AOMAXSUR0CnYVQl0HQhdX2UKGgGaAloD0MIFtukorGCS0CUhpRSlGgVTegDaBZHQKdjntvXK8t1fZQoaAZoCWgPQwhznUZaKlcxwJSGlFKUaBVL/2gWR0CnZKoxHoX9dX2UKGgGaAloD0MIhqqYSr+aY0CUhpRSlGgVTegDaBZHQKdl1qjafz11fZQoaAZoCWgPQwjC9/4G7StaQJSGlFKUaBVN6ANoFkdAp2niqKgqVnV9lChoBmgJaA9DCHu/0Y6bwWFAlIaUUpRoFU3oA2gWR0CnapIYekpJdX2UKGgGaAloD0MIjURoBBtYX0CUhpRSlGgVTegDaBZHQKd0+zguRLd1fZQoaAZoCWgPQwjZYOEkzeVhQJSGlFKUaBVN6ANoFkdAp3mrpFCswXV9lChoBmgJaA9DCFrwoq8gpUpAlIaUUpRoFU3oA2gWR0CnfbNhuwX7dX2UKGgGaAloD0MImfT3UnjCXUCUhpRSlGgVTegDaBZHQKd+Zi6QNkR1fZQoaAZoCWgPQwhxOPOrOepZQJSGlFKUaBVN6ANoFkdAp36YKrq+rXV9lChoBmgJaA9DCHOEDOTZz2BAlIaUUpRoFU3oA2gWR0Cnf6cG1QZXdX2UKGgGaAloD0MIbM1WXvJ0ZUCUhpRSlGgVTegDaBZHQKeDS1x82Jl1fZQoaAZoCWgPQwifIRyzbCNhQJSGlFKUaBVN6ANoFkdAp4R4kVvddnV9lChoBmgJaA9DCOP8TShEokPAlIaUUpRoFU0hAWgWR0CnpKRv3rUtdX2UKGgGaAloD0MIG7luSnltW0CUhpRSlGgVTegDaBZHQKep5ISUTtd1fZQoaAZoCWgPQwjS5GIMrPRZQJSGlFKUaBVN6ANoFkdAp6xqYTj//HV9lChoBmgJaA9DCH6P+usVdV5AlIaUUpRoFU3oA2gWR0CnrMfkNnXedX2UKGgGaAloD0MIwD3PnzbgWkCUhpRSlGgVTegDaBZHQKeu/Xz19OR1fZQoaAZoCWgPQwi7Y7FNKn1bQJSGlFKUaBVN6ANoFkdAp7AEa0hNd3V9lChoBmgJaA9DCJpAEYuYuGJAlIaUUpRoFU3oA2gWR0CnsRsUZeiSdX2UKGgGaAloD0MIt/C8VGxmWkCUhpRSlGgVTegDaBZHQKe09RsuWbB1fZQoaAZoCWgPQwhRobq5+BFiQJSGlFKUaBVN6ANoFkdAp7WmAG0NSnV9lChoBmgJaA9DCF/uk6MAJV5AlIaUUpRoFU3oA2gWR0Cnv2aK+BYndX2UKGgGaAloD0MIogvqW+akWkCUhpRSlGgVTegDaBZHQKfHcqrilzl1fZQoaAZoCWgPQwjPLXQlAsRkQJSGlFKUaBVN6ANoFkdAp8gk1fmcOXV9lChoBmgJaA9DCPfmN0w0aGJAlIaUUpRoFU3oA2gWR0CnyFeA/cFhdX2UKGgGaAloD0MIq7AZ4IKAW0CUhpRSlGgVTegDaBZHQKfJbEE1VHZ1fZQoaAZoCWgPQwj3yVGAqJBiQJSGlFKUaBVN6ANoFkdAp80rrE9+w3V9lChoBmgJaA9DCNBk/zyNxWFAlIaUUpRoFU3oA2gWR0CnzmI6CDmKdX2UKGgGaAloD0MIA1slWBydXECUhpRSlGgVTegDaBZHQKfuigL7XQN1fZQoaAZoCWgPQwhh3uNME2o0QJSGlFKUaBVL/WgWR0Cn8Lx9gF5fdX2UKGgGaAloD0MIUFH1K52MV0CUhpRSlGgVTegDaBZHQKfzVpkf9xZ1fZQoaAZoCWgPQwhgrkUL0L9fQJSGlFKUaBVN6ANoFkdAp/Wm+ZgG8nV9lChoBmgJaA9DCAltOZdinGBAlIaUUpRoFU3oA2gWR0Cn9ffjsD4hdX2UKGgGaAloD0MIs7RTc7mRY0CUhpRSlGgVTegDaBZHQKf4Bf642CN1fZQoaAZoCWgPQwgP8nowKTheQJSGlFKUaBVN6ANoFkdAp/j0xbjcVXV9lChoBmgJaA9DCCgqG9bU4WBAlIaUUpRoFU3oA2gWR0Cn+fkupS75dX2UKGgGaAloD0MIG5sdqb6IYUCUhpRSlGgVTegDaBZHQKf9fdTHbRF1fZQoaAZoCWgPQwjXEvJBz1BhQJSGlFKUaBVN6ANoFkdAp/4arR0EHXV9lChoBmgJaA9DCAd6qG3D9WBAlIaUUpRoFU3oA2gWR0CoBpjNIK+jdX2UKGgGaAloD0MIZK4Mqg36S0CUhpRSlGgVTRMBaBZHQKgITX4j8k51fZQoaAZoCWgPQwiDwTV39KRjQJSGlFKUaBVN6ANoFkdAqA1lvS+g13V9lChoBmgJaA9DCKX0TC8x4WJAlIaUUpRoFU3oA2gWR0CoDfhBZ6lddX2UKGgGaAloD0MIofSFkHN0YUCUhpRSlGgVTegDaBZHQKgPGCNCJGh1fZQoaAZoCWgPQwiCkZc1sQdiQJSGlFKUaBVN6ANoFkdAqBJsLjPv8nV9lChoBmgJaA9DCD9YxobulWJAlIaUUpRoFU3oA2gWR0CoE4CpvP1MdX2UKGgGaAloD0MIcTjzqzkgYkCUhpRSlGgVTegDaBZHQKgVTPPcBU91fZQoaAZoCWgPQwgwgVt3cyJmQJSGlFKUaBVN6ANoFkdAqDXWqFRHgHV9lChoBmgJaA9DCFqdnKE4qGBAlIaUUpRoFU3oA2gWR0CoODHUlRgrdX2UKGgGaAloD0MIEvsEUAyOZECUhpRSlGgVTegDaBZHQKg6OhvitJZ1fZQoaAZoCWgPQwjFceDVclxiQJSGlFKUaBVN6ANoFkdAqDqBNbkfcXV9lChoBmgJaA9DCMUbmUd+CWBAlIaUUpRoFU3oA2gWR0CoPE56D5CXdX2UKGgGaAloD0MIB+3Vx0NvWkCUhpRSlGgVTegDaBZHQKg9LlvIfbN1fZQoaAZoCWgPQwjLDvEPW4dlQJSGlFKUaBVN6ANoFkdAqD4lPxhDxHV9lChoBmgJaA9DCAuYwK27j2FAlIaUUpRoFU3oA2gWR0CoQhyfL9uQdX2UKGgGaAloD0MIVwirsYTSXUCUhpRSlGgVTegDaBZHQKhLGsFt8/l1fZQoaAZoCWgPQwjsFKsGYQ5aQJSGlFKUaBVN6ANoFkdAqE0GattALXV9lChoBmgJaA9DCG9Kea2EvmVAlIaUUpRoFU3oA2gWR0CoUrT9S/CZdX2UKGgGaAloD0MI1bK1vsh2ZUCUhpRSlGgVTegDaBZHQKhTYIzFdcB1fZQoaAZoCWgPQwg6B8+EJgRdQJSGlFKUaBVN6ANoFkdAqFSdrCWNWHV9lChoBmgJaA9DCLZMhuN5vWBAlIaUUpRoFU3oA2gWR0CoWGuwPiDNdX2UKGgGaAloD0MIPboRFhXzZUCUhpRSlGgVTegDaBZHQKhZtQemvW91fZQoaAZoCWgPQwgSg8DKIbNgQJSGlFKUaBVN6ANoFkdAqFvKF/QSjHV9lChoBmgJaA9DCENVTKWfDF9AlIaUUpRoFU3oA2gWR0CofDtbs4T9dX2UKGgGaAloD0MITmGlgooGM0CUhpRSlGgVS+toFkdAqHyETpPhynV9lChoBmgJaA9DCB0Dste7imBAlIaUUpRoFU3oA2gWR0CofvJOFg2IdX2UKGgGaAloD0MI16NwPQqeX0CUhpRSlGgVTegDaBZHQKiBTf6XSjR1fZQoaAZoCWgPQwiPi2oR0V1iQJSGlFKUaBVN6ANoFkdAqIGcDGLk0nV9lChoBmgJaA9DCODb9Gc/gF5AlIaUUpRoFU3oA2gWR0Cog4qRlpXZdX2UKGgGaAloD0MINNsV+mA7XkCUhpRSlGgVTegDaBZHQKiEcq814xF1fZQoaAZoCWgPQwhQVaGB2NFgQJSGlFKUaBVN6ANoFkdAqIVlvKlpGnV9lChoBmgJaA9DCCYBamrZrFxAlIaUUpRoFU3oA2gWR0CoiWsO5J9RdX2UKGgGaAloD0MIfjZy3ZSUY0CUhpRSlGgVTegDaBZHQKiSt72L5yl1fZQoaAZoCWgPQwgcl3FTA/5dQJSGlFKUaBVN6ANoFkdAqJS9WluWKXV9lChoBmgJaA9DCFzHuOLiiWVAlIaUUpRoFU3oA2gWR0ComrIi9qUNdX2UKGgGaAloD0MIOBH92voAYUCUhpRSlGgVTegDaBZHQKibX9itq591fZQoaAZoCWgPQwhD4bN1cLAvQJSGlFKUaBVL02gWR0ContTKT0QLdX2UKGgGaAloD0MIwJKrWPzfWkCUhpRSlGgVTegDaBZHQKig3NL127p1fZQoaAZoCWgPQwjlDpvITKZgQJSGlFKUaBVN6ANoFkdAqKIrC53C9HV9lChoBmgJaA9DCH15AfZR42JAlIaUUpRoFU3oA2gWR0CopEU+cH4XdX2UKGgGaAloD0MIfZHQlnN5LECUhpRSlGgVS/1oFkdAqKXV2gWadHV9lChoBmgJaA9DCCHOwwlMFmVAlIaUUpRoFU3oA2gWR0CoxXsju8brdX2UKGgGaAloD0MInrEv2fizZECUhpRSlGgVTegDaBZHQKjFxAAQxvh1fZQoaAZoCWgPQwifPCzUmuVjQJSGlFKUaBVN6ANoFkdAqMfrPSlWO3V9lChoBmgJaA9DCJaUu8/xLWNAlIaUUpRoFU3oA2gWR0CoyhFIEr5JdX2UKGgGaAloD0MIPC8VG3NgY0CUhpRSlGgVTegDaBZHQKjKWVX3g1p1fZQoaAZoCWgPQwjNzTeiexReQJSGlFKUaBVN6ANoFkdAqMwx9NN8E3V9lChoBmgJaA9DCN7IPPIH9UJAlIaUUpRoFUv2aBZHQKjMVY5ksjF1fZQoaAZoCWgPQwix/WSMjyxiQJSGlFKUaBVN6ANoFkdAqM0JgNPP9nV9lChoBmgJaA9DCKA4gH5fsGVAlIaUUpRoFU3oA2gWR0CozgIOQQtjdX2UKGgGaAloD0MIaqM6HcjNX0CUhpRSlGgVTegDaBZHQKjR9+gDifh1fZQoaAZoCWgPQwivsUtU73BiQJSGlFKUaBVN6ANoFkdAqNsgwoLG73V9lChoBmgJaA9DCLlwICSL8mFAlIaUUpRoFU3oA2gWR0Co4rtdZ7ojdX2UKGgGaAloD0MI0jdpGhS5Y0CUhpRSlGgVTegDaBZHQKjl0ZgogFJ1fZQoaAZoCWgPQwjBNuLJbvFcQJSGlFKUaBVN6ANoFkdAqOd0RzzVc3V9lChoBmgJaA9DCATLETIQCmRAlIaUUpRoFU3oA2gWR0Co6IfHHWBjdX2UKGgGaAloD0MILGSuDKrFXECUhpRSlGgVTegDaBZHQKjrsgSvkil1fZQoaAZoCWgPQwigpMACGMljQJSGlFKUaBVN6ANoFkdAqOxPCCSRsHV9lChoBmgJaA9DCCJxj6UPg11AlIaUUpRoFU3oA2gWR0Co7ItyHVPOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}