metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- f1
widget:
- text: >
The Democratic Party was totally corrupted by the Clinton Regime, and now
it is totally insane.
- text: >
The media gave scant coverage to Obama’s close relationship with radical
Reverend Jeremiah “God damn America) Wright who blamed the US for 9/11.
- text: |
It’s sharia compliance in New Mexico.
- text: |
Are you people serious?
- text: >
However, I ask, why were you not involved in the first place, Mr.
President?
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.6720214190093708
name: F1
SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1.0 |
|
0.0 |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.6720 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G3-setfit-model")
# Run inference
preds = model("Are you people serious?
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 28.3246 | 129 |
Label | Training Sample Count |
---|---|
0 | 2362 |
1 | 2518 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3302 | - |
0.0164 | 50 | 0.2709 | - |
0.0328 | 100 | 0.2545 | - |
0.0492 | 150 | 0.229 | - |
0.0656 | 200 | 0.2463 | - |
0.0820 | 250 | 0.2934 | - |
0.0984 | 300 | 0.2735 | - |
0.1148 | 350 | 0.2837 | - |
0.1311 | 400 | 0.2364 | - |
0.1475 | 450 | 0.2379 | - |
0.1639 | 500 | 0.188 | - |
0.1803 | 550 | 0.2443 | - |
0.1967 | 600 | 0.1274 | - |
0.2131 | 650 | 0.2106 | - |
0.2295 | 700 | 0.3211 | - |
0.2459 | 750 | 0.2443 | - |
0.2623 | 800 | 0.1979 | - |
0.2787 | 850 | 0.1679 | - |
0.2951 | 900 | 0.1208 | - |
0.3115 | 950 | 0.0594 | - |
0.3279 | 1000 | 0.11 | - |
0.3443 | 1050 | 0.0951 | - |
0.3607 | 1100 | 0.1059 | - |
0.3770 | 1150 | 0.1027 | - |
0.3934 | 1200 | 0.0771 | - |
0.4098 | 1250 | 0.0295 | - |
0.4262 | 1300 | 0.0696 | - |
0.4426 | 1350 | 0.104 | - |
0.4590 | 1400 | 0.13 | - |
0.4754 | 1450 | 0.1287 | - |
0.4918 | 1500 | 0.0264 | - |
0.5082 | 1550 | 0.0651 | - |
0.5246 | 1600 | 0.113 | - |
0.5410 | 1650 | 0.07 | - |
0.5574 | 1700 | 0.0016 | - |
0.5738 | 1750 | 0.1001 | - |
0.5902 | 1800 | 0.0116 | - |
0.6066 | 1850 | 0.01 | - |
0.6230 | 1900 | 0.0115 | - |
0.6393 | 1950 | 0.0053 | - |
0.6557 | 2000 | 0.0585 | - |
0.6721 | 2050 | 0.0034 | - |
0.6885 | 2100 | 0.0171 | - |
0.7049 | 2150 | 0.0141 | - |
0.7213 | 2200 | 0.0549 | - |
0.7377 | 2250 | 0.0026 | - |
0.7541 | 2300 | 0.1239 | - |
0.7705 | 2350 | 0.0121 | - |
0.7869 | 2400 | 0.0589 | - |
0.8033 | 2450 | 0.0042 | - |
0.8197 | 2500 | 0.0026 | - |
0.8361 | 2550 | 0.003 | - |
0.8525 | 2600 | 0.0004 | - |
0.8689 | 2650 | 0.0003 | - |
0.8852 | 2700 | 0.1 | - |
0.9016 | 2750 | 0.0567 | - |
0.9180 | 2800 | 0.0311 | - |
0.9344 | 2850 | 0.0404 | - |
0.9508 | 2900 | 0.0002 | - |
0.9672 | 2950 | 0.0008 | - |
0.9836 | 3000 | 0.0006 | - |
1.0 | 3050 | 0.0003 | 0.3187 |
1.0164 | 3100 | 0.0003 | - |
1.0328 | 3150 | 0.0002 | - |
1.0492 | 3200 | 0.0002 | - |
1.0656 | 3250 | 0.002 | - |
1.0820 | 3300 | 0.0002 | - |
1.0984 | 3350 | 0.0003 | - |
1.1148 | 3400 | 0.005 | - |
1.1311 | 3450 | 0.0613 | - |
1.1475 | 3500 | 0.0002 | - |
1.1639 | 3550 | 0.0002 | - |
1.1803 | 3600 | 0.0005 | - |
1.1967 | 3650 | 0.0001 | - |
1.2131 | 3700 | 0.0609 | - |
1.2295 | 3750 | 0.0003 | - |
1.2459 | 3800 | 0.0005 | - |
1.2623 | 3850 | 0.0006 | - |
1.2787 | 3900 | 0.0003 | - |
1.2951 | 3950 | 0.0014 | - |
1.3115 | 4000 | 0.0002 | - |
1.3279 | 4050 | 0.0001 | - |
1.3443 | 4100 | 0.0002 | - |
1.3607 | 4150 | 0.001 | - |
1.3770 | 4200 | 0.0004 | - |
1.3934 | 4250 | 0.0004 | - |
1.4098 | 4300 | 0.0002 | - |
1.4262 | 4350 | 0.0612 | - |
1.4426 | 4400 | 0.0613 | - |
1.4590 | 4450 | 0.0002 | - |
1.4754 | 4500 | 0.0603 | - |
1.4918 | 4550 | 0.0001 | - |
1.5082 | 4600 | 0.0011 | - |
1.5246 | 4650 | 0.0576 | - |
1.5410 | 4700 | 0.0001 | - |
1.5574 | 4750 | 0.0002 | - |
1.5738 | 4800 | 0.0002 | - |
1.5902 | 4850 | 0.0012 | - |
1.6066 | 4900 | 0.0003 | - |
1.6230 | 4950 | 0.0001 | - |
1.6393 | 5000 | 0.0001 | - |
1.6557 | 5050 | 0.0001 | - |
1.6721 | 5100 | 0.0001 | - |
1.6885 | 5150 | 0.0001 | - |
1.7049 | 5200 | 0.0002 | - |
1.7213 | 5250 | 0.0001 | - |
1.7377 | 5300 | 0.0002 | - |
1.7541 | 5350 | 0.0001 | - |
1.7705 | 5400 | 0.0001 | - |
1.7869 | 5450 | 0.0001 | - |
1.8033 | 5500 | 0.0001 | - |
1.8197 | 5550 | 0.0003 | - |
1.8361 | 5600 | 0.0001 | - |
1.8525 | 5650 | 0.0001 | - |
1.8689 | 5700 | 0.0001 | - |
1.8852 | 5750 | 0.0001 | - |
1.9016 | 5800 | 0.0002 | - |
1.9180 | 5850 | 0.0 | - |
1.9344 | 5900 | 0.0001 | - |
1.9508 | 5950 | 0.0 | - |
1.9672 | 6000 | 0.0 | - |
1.9836 | 6050 | 0.0001 | - |
2.0 | 6100 | 0.0001 | 0.3313 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}