File size: 1,856 Bytes
217c51a
0f8e2e5
217c51a
 
 
 
 
 
6eeeca3
217c51a
 
 
 
 
6eeeca3
217c51a
 
 
 
 
6eeeca3
acb531d
6eeeca3
217c51a
 
 
 
 
 
 
 
 
acb531d
 
217c51a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2e2f6
 
217c51a
 
 
 
 
 
 
 
 
acb531d
 
 
 
 
217c51a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
base_model: albert-base-v2
model-index:
- name: albert-base-v2-finetuned-rte
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: glue
      type: glue
      args: rte
    metrics:
    - type: accuracy
      value: 0.7581227436823105
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# albert-base-v2-finetuned-rte

This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2496
- Accuracy: 0.7581

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 249  | 0.5914          | 0.6751   |
| No log        | 2.0   | 498  | 0.5843          | 0.7184   |
| 0.5873        | 3.0   | 747  | 0.6925          | 0.7220   |
| 0.5873        | 4.0   | 996  | 1.1613          | 0.7545   |
| 0.2149        | 5.0   | 1245 | 1.2496          | 0.7581   |


### Framework versions

- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3