File size: 10,010 Bytes
5d125d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright 2024 Katherine Crowson, AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
EulerAncestralDiscreteScheduler,
EulerAncestralDiscreteSchedulerOutput,
rescale_zero_terminal_snr,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class EulerAncestralDiscreteXPredScheduler(EulerAncestralDiscreteScheduler):
"""
Ancestral sampling with Euler method steps. This model inherits from [`EulerAncestralDiscreteScheduler`]. Check the
superclass documentation for the args and returns.
For more details, see the original paper: https://arxiv.org/abs/2403.08381
"""
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
super(EulerAncestralDiscreteXPredScheduler, self).__init__(
num_train_timesteps,
beta_start,
beta_end,
beta_schedule,
trained_betas,
prediction_type,
timestep_spacing,
steps_offset,
)
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5, dtype=np.float32)
self.sigmas = torch.from_numpy(sigmas)
def rescale_betas_zero_snr(self):
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
self.sigmas = torch.from_numpy(sigmas)
@property
def init_noise_sigma(self):
return 1.0
def scale_model_input(
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
) -> torch.FloatTensor:
self.is_scale_input_called = True
# standard deviation of the initial noise distribution
return sample
def set_timesteps(
self, num_inference_steps: int, device: Union[str, torch.device] = None
):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float
)[::-1].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (
(np.arange(0, num_inference_steps) * step_ratio)
.round()[::-1]
.copy()
.astype(float)
)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (
(np.arange(self.config.num_train_timesteps, 0, -step_ratio))
.round()
.copy()
.astype(float)
)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=device)
if str(device).startswith("mps"):
# mps does not support float64
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
self.timesteps = torch.from_numpy(timesteps).to(device=device)
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`float`): current timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
generator (`torch.Generator`, optional): Random number generator.
return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_index = (self.timesteps == timestep).nonzero().item()
if self.config.prediction_type == "sample":
pred_original_sample = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
sigma_t = self.sigmas[step_index]
sigma_s = self.sigmas[step_index + 1]
alpha_t = (1 - sigma_t**2) ** 0.5
alpha_s = (1 - sigma_s**2) ** 0.5
coef_sample = (sigma_s / sigma_t) ** 2 * alpha_t / alpha_s
coef_noise = (sigma_s / sigma_t) * (1 - (alpha_t / alpha_s) ** 2) ** 0.5
coef_x = alpha_s * (1 - alpha_t**2 / alpha_s**2) / sigma_t**2
device = model_output.device
noise = randn_tensor(
model_output.shape,
dtype=model_output.dtype,
device=device,
generator=generator,
)
prev_sample = (
coef_sample * sample + coef_x * pred_original_sample + coef_noise * noise
)
if not return_dict:
return (prev_sample,)
return EulerAncestralDiscreteSchedulerOutput(
prev_sample=prev_sample, pred_original_sample=pred_original_sample
)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(
device=original_samples.device, dtype=original_samples.dtype
)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(
original_samples.device, dtype=torch.float32
)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
|