File size: 10,010 Bytes
5d125d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright 2024 Katherine Crowson, AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
    EulerAncestralDiscreteScheduler,
    EulerAncestralDiscreteSchedulerOutput,
    rescale_zero_terminal_snr,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class EulerAncestralDiscreteXPredScheduler(EulerAncestralDiscreteScheduler):
    """
    Ancestral sampling with Euler method steps. This model inherits from [`EulerAncestralDiscreteScheduler`]. Check the
    superclass documentation for the args and returns.

    For more details, see the original paper: https://arxiv.org/abs/2403.08381
    """

    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
    ):
        super(EulerAncestralDiscreteXPredScheduler, self).__init__(
            num_train_timesteps,
            beta_start,
            beta_end,
            beta_schedule,
            trained_betas,
            prediction_type,
            timestep_spacing,
            steps_offset,
        )

        sigmas = np.array((1 - self.alphas_cumprod) ** 0.5, dtype=np.float32)
        self.sigmas = torch.from_numpy(sigmas)

    def rescale_betas_zero_snr(self):
        self.betas = rescale_zero_terminal_snr(self.betas)
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
        self.sigmas = torch.from_numpy(sigmas)

    @property
    def init_noise_sigma(self):
        return 1.0

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        self.is_scale_input_called = True
        # standard deviation of the initial noise distribution
        return sample

    def set_timesteps(
        self, num_inference_steps: int, device: Union[str, torch.device] = None
    ):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(
                0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float
            )[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (
                (np.arange(0, num_inference_steps) * step_ratio)
                .round()[::-1]
                .copy()
                .astype(float)
            )
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (
                (np.arange(self.config.num_train_timesteps, 0, -step_ratio))
                .round()
                .copy()
                .astype(float)
            )
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

        sigmas = np.array((1 - self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)

        self.sigmas = torch.from_numpy(sigmas).to(device=device)
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`float`): current timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            generator (`torch.Generator`, optional): Random number generator.
            return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise
            a `tuple`. When returning a tuple, the first element is the sample tensor.

        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        step_index = (self.timesteps == timestep).nonzero().item()

        if self.config.prediction_type == "sample":
            pred_original_sample = model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        sigma_t = self.sigmas[step_index]
        sigma_s = self.sigmas[step_index + 1]
        alpha_t = (1 - sigma_t**2) ** 0.5
        alpha_s = (1 - sigma_s**2) ** 0.5

        coef_sample = (sigma_s / sigma_t) ** 2 * alpha_t / alpha_s
        coef_noise = (sigma_s / sigma_t) * (1 - (alpha_t / alpha_s) ** 2) ** 0.5
        coef_x = alpha_s * (1 - alpha_t**2 / alpha_s**2) / sigma_t**2

        device = model_output.device
        noise = randn_tensor(
            model_output.shape,
            dtype=model_output.dtype,
            device=device,
            generator=generator,
        )
        prev_sample = (
            coef_sample * sample + coef_x * pred_original_sample + coef_noise * noise
        )

        if not return_dict:
            return (prev_sample,)

        return EulerAncestralDiscreteSchedulerOutput(
            prev_sample=prev_sample, pred_original_sample=pred_original_sample
        )

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(
            device=original_samples.device, dtype=original_samples.dtype
        )
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(
                original_samples.device, dtype=torch.float32
            )
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples