File size: 1,780 Bytes
61ad12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: CodeT5-Small-Solidity-Vulnerability
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodeT5-Small-Solidity-Vulnerability

This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0748        | 1.0   | 4713  | 0.0835          | 0.9830   | 0.9834    | 0.9830 | 0.9828 |
| 0.025         | 2.0   | 9426  | 0.0333          | 0.9805   | 0.9822    | 0.9805 | 0.9808 |
| 0.012         | 3.0   | 14139 | 0.0000          | 1.0      | 1.0       | 1.0    | 1.0    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1