File size: 15,898 Bytes
811875b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8b5925ea60>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f8b592598d0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 1200000,
    "_total_timesteps": 1200000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1677759786705776790,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAa+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/a+XbPpkCyjxAMA8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA04VgP7tdJD0ufQe/+oHjPj0syb/3Tu4+gf8LPmvRhT+szsk9TA6YP85xIr/MCsU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0Tpr5ds+mQLKPEAwDz9QkaS8OKhVO+wq0TqUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[0.4294847  0.02465944 0.55933   ]\n [0.4294847  0.02465944 0.55933   ]\n [0.4294847  0.02465944 0.55933   ]\n [0.4294847  0.02465944 0.55933   ]]",
        "desired_goal": "[[ 0.877042    0.04012845 -0.52925384]\n [ 0.44435102 -1.5716625   0.4654462 ]\n [ 0.13671686  1.0454534   0.09853873]\n [ 1.1879363  -0.634549    1.539392  ]]",
        "observation": "[[ 0.4294847   0.02465944  0.55933    -0.02008882  0.00326015  0.00159582]\n [ 0.4294847   0.02465944  0.55933    -0.02008882  0.00326015  0.00159582]\n [ 0.4294847   0.02465944  0.55933    -0.02008882  0.00326015  0.00159582]\n [ 0.4294847   0.02465944  0.55933    -0.02008882  0.00326015  0.00159582]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqVOvPVMDnr1nJtQ8GQgDvvt/yb3ruHc9mZGQPeDFWb37bfM6LgUCPjzi+bxpV/E8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[ 0.08560879 -0.07715478  0.02589722]\n [-0.12796058 -0.09838863  0.06047909]\n [ 0.07059021 -0.05316722  0.00185722]\n [ 0.12697288 -0.03050338  0.02946063]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL90kBoF1CsCUhpRSlIwBbJRLMowBdJRHQKylohfShJ11fZQoaAZoCWgPQwhyhuKON/kAwJSGlFKUaBVLMmgWR0CspWUzsQd0dX2UKGgGaAloD0MIU7DG2XQEBcCUhpRSlGgVSzJoFkdArKUjmuDBdnV9lChoBmgJaA9DCEjhehSuZwLAlIaUUpRoFUsyaBZHQKyk4nDziCJ1fZQoaAZoCWgPQwgiwr8IGjMHwJSGlFKUaBVLMmgWR0CspqfhuO0cdX2UKGgGaAloD0MIIVZ/hGHA+r+UhpRSlGgVSzJoFkdArKZrRrrPdHV9lChoBmgJaA9DCIRGsHH9GwPAlIaUUpRoFUsyaBZHQKymKaBqbjN1fZQoaAZoCWgPQwiOPBBZpGkBwJSGlFKUaBVLMmgWR0CspeiBoVVQdX2UKGgGaAloD0MIBK+WOzMB+7+UhpRSlGgVSzJoFkdArKeqgdwNsnV9lChoBmgJaA9DCPkwe9l2mvy/lIaUUpRoFUsyaBZHQKynbb6guh91fZQoaAZoCWgPQwgmjdE6qtoAwJSGlFKUaBVLMmgWR0CspyxyXD3udX2UKGgGaAloD0MIkNyadFsi/L+UhpRSlGgVSzJoFkdArKbrIT4+KXV9lChoBmgJaA9DCH44SIjy5QTAlIaUUpRoFUsyaBZHQKyoo8lHBk91fZQoaAZoCWgPQwhQ/Bhz1zIAwJSGlFKUaBVLMmgWR0CsqGbFKkEcdX2UKGgGaAloD0MIz0wwnGtY/r+UhpRSlGgVSzJoFkdArKglEw35vnV9lChoBmgJaA9DCBiUaTS5uATAlIaUUpRoFUsyaBZHQKyn46K+BYp1fZQoaAZoCWgPQwh4tdyZCUYBwJSGlFKUaBVLMmgWR0CsqdxMewLWdX2UKGgGaAloD0MIpwhwehcvC8CUhpRSlGgVSzJoFkdArKmhezD4xnV9lChoBmgJaA9DCO5D3nL14wLAlIaUUpRoFUsyaBZHQKypYpH7P6d1fZQoaAZoCWgPQwimC7H6IwwHwJSGlFKUaBVLMmgWR0CsqSH2AXl9dX2UKGgGaAloD0MIZHWr56S3AMCUhpRSlGgVSzJoFkdArKt5OpKjBXV9lChoBmgJaA9DCNqOqbuyS/+/lIaUUpRoFUsyaBZHQKyrPR5TqB51fZQoaAZoCWgPQwgPf03WqIf5v5SGlFKUaBVLMmgWR0CsqvxXnyNGdX2UKGgGaAloD0MIhNOCF32F/L+UhpRSlGgVSzJoFkdArKq7ofSx7nV9lChoBmgJaA9DCFPOF3svPgbAlIaUUpRoFUsyaBZHQKytFH09QoF1fZQoaAZoCWgPQwjGTQ00n3MBwJSGlFKUaBVLMmgWR0CsrNhFd9lVdX2UKGgGaAloD0MI/kRlw5pqAcCUhpRSlGgVSzJoFkdArKyXTkQwsXV9lChoBmgJaA9DCLclcsEZPALAlIaUUpRoFUsyaBZHQKysVvo/zJ91fZQoaAZoCWgPQwgaUG9GzRf3v5SGlFKUaBVLMmgWR0CsrsyvTw2EdX2UKGgGaAloD0MIbTmX4qpy/L+UhpRSlGgVSzJoFkdArK6Qy2x6fXV9lChoBmgJaA9DCIh/2NKjiQLAlIaUUpRoFUsyaBZHQKyuUEhaC+V1fZQoaAZoCWgPQwhTBg5o6Qr8v5SGlFKUaBVLMmgWR0Csrg+rELpidX2UKGgGaAloD0MIL4UHza67AcCUhpRSlGgVSzJoFkdArLCBoh6jWXV9lChoBmgJaA9DCOmcn+I4MATAlIaUUpRoFUsyaBZHQKywRWzWwvB1fZQoaAZoCWgPQwiBWaFI93P9v5SGlFKUaBVLMmgWR0CssAS0a6z3dX2UKGgGaAloD0MIECTvHMqwAMCUhpRSlGgVSzJoFkdArK/EBMi8nXV9lChoBmgJaA9DCMPVARB39f6/lIaUUpRoFUsyaBZHQKyyPpeNT991fZQoaAZoCWgPQwjsGFdcHBUIwJSGlFKUaBVLMmgWR0CssgJiZv1ldX2UKGgGaAloD0MIFK+ytike/7+UhpRSlGgVSzJoFkdArLHB2OhkAnV9lChoBmgJaA9DCCXpmsk32/+/lIaUUpRoFUsyaBZHQKyxgYD1XeZ1fZQoaAZoCWgPQwjiVkEMdA0AwJSGlFKUaBVLMmgWR0Css+19Wp6ydX2UKGgGaAloD0MI18BWCRbHAMCUhpRSlGgVSzJoFkdArLOxS3solXV9lChoBmgJaA9DCO/jaI6sfAHAlIaUUpRoFUsyaBZHQKyzcGu9vjx1fZQoaAZoCWgPQwhZUu4+x6cBwJSGlFKUaBVLMmgWR0Cssy/t6X0HdX2UKGgGaAloD0MI7ISX4NQHAcCUhpRSlGgVSzJoFkdArLVGVZ9uxnV9lChoBmgJaA9DCJxu2SH+Yfu/lIaUUpRoFUsyaBZHQKy1CV32VVx1fZQoaAZoCWgPQwhX7gVmhSIPwJSGlFKUaBVLMmgWR0CstMe49X9zdX2UKGgGaAloD0MIM23/ykqzBMCUhpRSlGgVSzJoFkdArLSGchC+lHV9lChoBmgJaA9DCATnjCjtbQDAlIaUUpRoFUsyaBZHQKy2P4Uvf0p1fZQoaAZoCWgPQwjNd/ATBxD8v5SGlFKUaBVLMmgWR0CstgKNQ0oCdX2UKGgGaAloD0MIw50LI73o/b+UhpRSlGgVSzJoFkdArLXA+MZP23V9lChoBmgJaA9DCGnDYWngRwPAlIaUUpRoFUsyaBZHQKy1f668QI51fZQoaAZoCWgPQwiY9s391YMDwJSGlFKUaBVLMmgWR0Cst0DWK/EgdX2UKGgGaAloD0MIjIUhcvoaDsCUhpRSlGgVSzJoFkdArLcD+PzWgHV9lChoBmgJaA9DCDQsRl1rjwHAlIaUUpRoFUsyaBZHQKy2wmtyPuJ1fZQoaAZoCWgPQwg5nPnVHKAAwJSGlFKUaBVLMmgWR0CstoERJ2+xdX2UKGgGaAloD0MIPdf34SABBsCUhpRSlGgVSzJoFkdArLg+CZnctXV9lChoBmgJaA9DCA2nzM034gbAlIaUUpRoFUsyaBZHQKy4AT5ftyB1fZQoaAZoCWgPQwh/3enOE48FwJSGlFKUaBVLMmgWR0Cst7+z+m3wdX2UKGgGaAloD0MI/oAHBhB+/r+UhpRSlGgVSzJoFkdArLd+W2PT5XV9lChoBmgJaA9DCOo+AKlNfADAlIaUUpRoFUsyaBZHQKy5QgSOBDp1fZQoaAZoCWgPQwi2os1xbpP7v5SGlFKUaBVLMmgWR0CsuQUOd5IIdX2UKGgGaAloD0MIVyJQ/YOIBsCUhpRSlGgVSzJoFkdArLjDeCTUzHV9lChoBmgJaA9DCAskKH6M+QPAlIaUUpRoFUsyaBZHQKy4ghUzbex1fZQoaAZoCWgPQwgeF9UiohgNwJSGlFKUaBVLMmgWR0CsukKO938odX2UKGgGaAloD0MIXtVZLbBHA8CUhpRSlGgVSzJoFkdArLoFnf2saXV9lChoBmgJaA9DCPhUTntK7gHAlIaUUpRoFUsyaBZHQKy5xBu4wyt1fZQoaAZoCWgPQwj6fJQRF8D8v5SGlFKUaBVLMmgWR0CsuYLO7g89dX2UKGgGaAloD0MIB+v/HOZrC8CUhpRSlGgVSzJoFkdArLtBm5DqnnV9lChoBmgJaA9DCGAEjZlE/QDAlIaUUpRoFUsyaBZHQKy7BKBd2Pl1fZQoaAZoCWgPQwitUQ/R6A4BwJSGlFKUaBVLMmgWR0CsusMEzO5bdX2UKGgGaAloD0MITrSrkPIzAcCUhpRSlGgVSzJoFkdArLqBlWfbsXV9lChoBmgJaA9DCBfyCG6kbPy/lIaUUpRoFUsyaBZHQKy8NM0xdpt1fZQoaAZoCWgPQwgKLev+sZD5v5SGlFKUaBVLMmgWR0Csu/fHxSYPdX2UKGgGaAloD0MIXYqryr5rBcCUhpRSlGgVSzJoFkdArLu2HerMknV9lChoBmgJaA9DCN9wH7k1KQLAlIaUUpRoFUsyaBZHQKy7dLgXMyJ1fZQoaAZoCWgPQwjrOlRTkrX6v5SGlFKUaBVLMmgWR0CsvTmplz2fdX2UKGgGaAloD0MI5llJK75hAcCUhpRSlGgVSzJoFkdArLz8sFt8/nV9lChoBmgJaA9DCIQNT6+UJfy/lIaUUpRoFUsyaBZHQKy8uw9q1w51fZQoaAZoCWgPQwjzV8hcGdQAwJSGlFKUaBVLMmgWR0CsvHnHWBjGdX2UKGgGaAloD0MIm5DWGHSiCMCUhpRSlGgVSzJoFkdArL48qMFUynV9lChoBmgJaA9DCD4+ITtvQwjAlIaUUpRoFUsyaBZHQKy9/+/gzgx1fZQoaAZoCWgPQwixNsZOeKkHwJSGlFKUaBVLMmgWR0Csvb6lchTwdX2UKGgGaAloD0MIXMzPDU15AMCUhpRSlGgVSzJoFkdArL19aY/mknV9lChoBmgJaA9DCDUJ3pBGhQDAlIaUUpRoFUsyaBZHQKy/SBI4EOl1fZQoaAZoCWgPQwgrTyDsFCv9v5SGlFKUaBVLMmgWR0Csvws3IdU9dX2UKGgGaAloD0MIxSCwcmiRBcCUhpRSlGgVSzJoFkdArL7JrFfiP3V9lChoBmgJaA9DCCY0SSwp9wfAlIaUUpRoFUsyaBZHQKy+iGSIP9V1fZQoaAZoCWgPQwj6CPzh518HwJSGlFKUaBVLMmgWR0CswEn8sMAndX2UKGgGaAloD0MIRaD6B5FsAcCUhpRSlGgVSzJoFkdArMANVcUuc3V9lChoBmgJaA9DCEQ0uoPYGf+/lIaUUpRoFUsyaBZHQKy/y/zJ6pp1fZQoaAZoCWgPQwhXXvI/+ZsDwJSGlFKUaBVLMmgWR0Csv4rBCUosdX2UKGgGaAloD0MIwAevXdqQAMCUhpRSlGgVSzJoFkdArMFFq33HrHV9lChoBmgJaA9DCEiLM4Y5gQbAlIaUUpRoFUsyaBZHQKzBCLHdXT51fZQoaAZoCWgPQwi7050nnrMCwJSGlFKUaBVLMmgWR0CswMdiUgSwdX2UKGgGaAloD0MI0xVsI55MAcCUhpRSlGgVSzJoFkdArMCGE9Mbm3V9lChoBmgJaA9DCAQAx549dwPAlIaUUpRoFUsyaBZHQKzCPxzaK1p1fZQoaAZoCWgPQwiXj6SkhwELwJSGlFKUaBVLMmgWR0CswgIkAxSHdX2UKGgGaAloD0MIQfFjzF0L/L+UhpRSlGgVSzJoFkdArMHAlUp/gHV9lChoBmgJaA9DCGL4iJgSqQPAlIaUUpRoFUsyaBZHQKzBfzxPO6d1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 60000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}