File size: 5,411 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn.functional as F
import math
from einops import rearrange

# return mask where padding is FALSE
def lengths_to_mask(lengths, max_len):
    # max_len = max(lengths)
    mask = torch.arange(max_len, device=lengths.device).expand(len(lengths), max_len) < lengths.unsqueeze(1)
    return mask #(b, len)

# return mask where padding is ALL FALSE
def get_pad_mask_idx(seq, pad_idx):
    return (seq != pad_idx).unsqueeze(1)

# Given seq: (b, s)
# Return mat: (1, s, s)
# Example Output:
#        [[[ True, False, False],
#          [ True,  True, False],
#          [ True,  True,  True]]]
# For causal attention
def get_subsequent_mask(seq):
    sz_b, seq_len = seq.shape
    subsequent_mask = (1 - torch.triu(
        torch.ones((1, seq_len, seq_len)), diagonal=1)).bool()
    return subsequent_mask.to(seq.device)


def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def eval_decorator(fn):
    def inner(model, *args, **kwargs):
        was_training = model.training
        model.eval()
        out = fn(model, *args, **kwargs)
        model.train(was_training)
        return out
    return inner

def l2norm(t):
    return F.normalize(t, dim = -1)

# tensor helpers

# Get a random subset of TRUE mask, with prob
def get_mask_subset_prob(mask, prob):
    subset_mask = torch.bernoulli(mask, p=prob) & mask
    return subset_mask


# Get mask of special_tokens in ids
def get_mask_special_tokens(ids, special_ids):
    mask = torch.zeros_like(ids).bool()
    for special_id in special_ids:
        mask |= (ids==special_id)
    return mask

# network builder helpers
def _get_activation_fn(activation):
    if activation == "relu":
        return F.relu
    elif activation == "gelu":
        return F.gelu

    raise RuntimeError("activation should be relu/gelu, not {}".format(activation))

# classifier free guidance functions

def uniform(shape, device=None):
    return torch.zeros(shape, device=device).float().uniform_(0, 1)

def prob_mask_like(shape, prob, device=None):
    if prob == 1:
        return torch.ones(shape, device=device, dtype=torch.bool)
    elif prob == 0:
        return torch.zeros(shape, device=device, dtype=torch.bool)
    else:
        return uniform(shape, device=device) < prob

# sampling helpers

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def gumbel_noise(t):
    noise = torch.zeros_like(t).uniform_(0, 1)
    return -log(-log(noise))

def gumbel_sample(t, temperature = 1., dim = 1):
    return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)


# Example input:
#        [[ 0.3596,  0.0862,  0.9771, -1.0000, -1.0000, -1.0000],
#         [ 0.4141,  0.1781,  0.6628,  0.5721, -1.0000, -1.0000],
#         [ 0.9428,  0.3586,  0.1659,  0.8172,  0.9273, -1.0000]]
# Example output:
#        [[  -inf,   -inf, 0.9771,   -inf,   -inf,   -inf],
#         [  -inf,   -inf, 0.6628,   -inf,   -inf,   -inf],
#         [0.9428,   -inf,   -inf,   -inf,   -inf,   -inf]]
def top_k(logits, thres = 0.9, dim = 1):
    k = math.ceil((1 - thres) * logits.shape[dim])
    val, ind = logits.topk(k, dim = dim)
    probs = torch.full_like(logits, float('-inf'))
    probs.scatter_(dim, ind, val)
    # func verified
    # print(probs)
    # print(logits)
    # raise
    return probs

# noise schedules

# More on large value, less on small
def cosine_schedule(t):
    return torch.cos(t * math.pi * 0.5)

def scale_cosine_schedule(t, scale):
    return torch.clip(scale*torch.cos(t * math.pi * 0.5) + 1 - scale, min=0., max=1.)

# More on small value, less on large
def q_schedule(bs, low, high, device):
    noise = uniform((bs,), device=device)
    schedule = 1 - cosine_schedule(noise)
    return torch.round(schedule * (high - low - 1)).long() + low

def cal_performance(pred, labels, ignore_index=None, smoothing=0., tk=1):
    loss = cal_loss(pred, labels, ignore_index, smoothing=smoothing)
    # pred_id = torch.argmax(pred, dim=1)
    # mask = labels.ne(ignore_index)
    # n_correct = pred_id.eq(labels).masked_select(mask)
    # acc = torch.mean(n_correct.float()).item()
    pred_id_k = torch.topk(pred, k=tk, dim=1).indices
    pred_id = pred_id_k[:, 0]
    mask = labels.ne(ignore_index)
    n_correct = (pred_id_k == labels.unsqueeze(1)).any(dim=1).masked_select(mask)
    acc = torch.mean(n_correct.float()).item()

    return loss, pred_id, acc


def cal_loss(pred, labels, ignore_index=None, smoothing=0.):
    '''Calculate cross entropy loss, apply label smoothing if needed.'''
    # print(pred.shape, labels.shape) #torch.Size([64, 1028, 55]) torch.Size([64, 55])
    # print(pred.shape, labels.shape) #torch.Size([64, 1027, 55]) torch.Size([64, 55])
    if smoothing:
        space = 2
        n_class = pred.size(1)
        mask = labels.ne(ignore_index)
        one_hot = rearrange(F.one_hot(labels, n_class + space), 'a ... b -> a b ...')[:, :n_class]
        # one_hot = torch.zeros_like(pred).scatter(1, labels.unsqueeze(1), 1)
        sm_one_hot = one_hot * (1 - smoothing) + (1 - one_hot) * smoothing / (n_class - 1)
        neg_log_prb = -F.log_softmax(pred, dim=1)
        loss = (sm_one_hot * neg_log_prb).sum(dim=1)
        # loss = F.cross_entropy(pred, sm_one_hot, reduction='none')
        loss = torch.mean(loss.masked_select(mask))
    else:
        loss = F.cross_entropy(pred, labels, ignore_index=ignore_index)

    return loss