File size: 7,378 Bytes
823807d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
from os.path import join as pjoin
from models.mask_transformer.transformer import ResidualTransformer
from models.mask_transformer.transformer_trainer import ResidualTransformerTrainer
from models.vq.model import RVQVAE
from options.train_option import TrainT2MOptions
from utils.plot_script import plot_3d_motion
from utils.motion_process import recover_from_ric
from utils.get_opt import get_opt
from utils.fixseed import fixseed
from utils.paramUtil import t2m_kinematic_chain, kit_kinematic_chain
from data.t2m_dataset import Text2MotionDataset
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
from models.t2m_eval_wrapper import EvaluatorModelWrapper
def plot_t2m(data, save_dir, captions, m_lengths):
data = train_dataset.inv_transform(data)
# print(ep_curves.shape)
for i, (caption, joint_data) in enumerate(zip(captions, data)):
joint_data = joint_data[:m_lengths[i]]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), opt.joints_num).numpy()
save_path = pjoin(save_dir, '%02d.mp4'%i)
# print(joint.shape)
plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
def load_vq_model():
opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
vq_opt = get_opt(opt_path, opt.device)
vq_model = RVQVAE(vq_opt,
dim_pose,
vq_opt.nb_code,
vq_opt.code_dim,
vq_opt.output_emb_width,
vq_opt.down_t,
vq_opt.stride_t,
vq_opt.width,
vq_opt.depth,
vq_opt.dilation_growth_rate,
vq_opt.vq_act,
vq_opt.vq_norm)
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
map_location=opt.device)
model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
vq_model.load_state_dict(ckpt[model_key])
print(f'Loading VQ Model {opt.vq_name}')
vq_model.to(opt.device)
return vq_model, vq_opt
if __name__ == '__main__':
parser = TrainT2MOptions()
opt = parser.parse()
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
opt.model_dir = pjoin(opt.save_root, 'model')
# opt.meta_dir = pjoin(opt.save_root, 'meta')
opt.eval_dir = pjoin(opt.save_root, 'animation')
opt.log_dir = pjoin('./log/res/', opt.dataset_name, opt.name)
os.makedirs(opt.model_dir, exist_ok=True)
# os.makedirs(opt.meta_dir, exist_ok=True)
os.makedirs(opt.eval_dir, exist_ok=True)
os.makedirs(opt.log_dir, exist_ok=True)
if opt.dataset_name == 't2m':
opt.data_root = './dataset/HumanML3D'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.joints_num = 22
opt.max_motion_len = 55
dim_pose = 263
radius = 4
fps = 20
kinematic_chain = t2m_kinematic_chain
dataset_opt_path = './checkpoints/t2m/Comp_v6_KLD005/opt.txt'
elif opt.dataset_name == 'kit': #TODO
opt.data_root = './dataset/KIT-ML'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
opt.max_motion_len = 55
kinematic_chain = kit_kinematic_chain
dataset_opt_path = './checkpoints/kit/Comp_v6_KLD005/opt.txt'
else:
raise KeyError('Dataset Does Not Exist')
opt.text_dir = pjoin(opt.data_root, 'texts')
vq_model, vq_opt = load_vq_model()
clip_version = 'ViT-B/32'
opt.num_tokens = vq_opt.nb_code
opt.num_quantizers = vq_opt.num_quantizers
# if opt.is_v2:
res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
cond_mode='text',
latent_dim=opt.latent_dim,
ff_size=opt.ff_size,
num_layers=opt.n_layers,
num_heads=opt.n_heads,
dropout=opt.dropout,
clip_dim=512,
shared_codebook=vq_opt.shared_codebook,
cond_drop_prob=opt.cond_drop_prob,
# codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
share_weight=opt.share_weight,
clip_version=clip_version,
opt=opt)
# else:
# res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
# cond_mode='text',
# latent_dim=opt.latent_dim,
# ff_size=opt.ff_size,
# num_layers=opt.n_layers,
# num_heads=opt.n_heads,
# dropout=opt.dropout,
# clip_dim=512,
# shared_codebook=vq_opt.shared_codebook,
# cond_drop_prob=opt.cond_drop_prob,
# # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
# clip_version=clip_version,
# opt=opt)
all_params = 0
pc_transformer = sum(param.numel() for param in res_transformer.parameters_wo_clip())
print(res_transformer)
# print("Total parameters of t2m_transformer net: {:.2f}M".format(pc_transformer / 1000_000))
all_params += pc_transformer
print('Total parameters of all models: {:.2f}M'.format(all_params / 1000_000))
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'meta', 'std.npy'))
train_split_file = pjoin(opt.data_root, 'train.txt')
val_split_file = pjoin(opt.data_root, 'val.txt')
train_dataset = Text2MotionDataset(opt, mean, std, train_split_file)
val_dataset = Text2MotionDataset(opt, mean, std, val_split_file)
train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, num_workers=4, shuffle=True, drop_last=True)
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'val', device=opt.device)
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
trainer = ResidualTransformerTrainer(opt, res_transformer, vq_model)
trainer.train(train_loader, val_loader, eval_val_loader, eval_wrapper=eval_wrapper, plot_eval=plot_t2m) |