File size: 9,045 Bytes
823807d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from os.path import join as pjoin

import torch

from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE

from options.eval_option import EvalT2MOptions
from utils.get_opt import get_opt
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader
from models.t2m_eval_wrapper import EvaluatorModelWrapper

import utils.eval_t2m as eval_t2m
from utils.fixseed import fixseed

import numpy as np

def load_vq_model(vq_opt):
    # opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
    vq_model = RVQVAE(vq_opt,
                dim_pose,
                vq_opt.nb_code,
                vq_opt.code_dim,
                vq_opt.output_emb_width,
                vq_opt.down_t,
                vq_opt.stride_t,
                vq_opt.width,
                vq_opt.depth,
                vq_opt.dilation_growth_rate,
                vq_opt.vq_act,
                vq_opt.vq_norm)
    ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
                            map_location=opt.device)
    model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
    vq_model.load_state_dict(ckpt[model_key])
    print(f'Loading VQ Model {vq_opt.name} Completed!')
    return vq_model, vq_opt

def load_trans_model(model_opt, which_model):
    t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim,
                                      cond_mode='text',
                                      latent_dim=model_opt.latent_dim,
                                      ff_size=model_opt.ff_size,
                                      num_layers=model_opt.n_layers,
                                      num_heads=model_opt.n_heads,
                                      dropout=model_opt.dropout,
                                      clip_dim=512,
                                      cond_drop_prob=model_opt.cond_drop_prob,
                                      clip_version=clip_version,
                                      opt=model_opt)
    ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model),
                      map_location=opt.device)
    model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans'
    # print(ckpt.keys())
    missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False)
    assert len(unexpected_keys) == 0
    assert all([k.startswith('clip_model.') for k in missing_keys])
    print(f'Loading Mask Transformer {opt.name} from epoch {ckpt["ep"]}!')
    return t2m_transformer

def load_res_model(res_opt):
    res_opt.num_quantizers = vq_opt.num_quantizers
    res_opt.num_tokens = vq_opt.nb_code
    res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
                                            cond_mode='text',
                                            latent_dim=res_opt.latent_dim,
                                            ff_size=res_opt.ff_size,
                                            num_layers=res_opt.n_layers,
                                            num_heads=res_opt.n_heads,
                                            dropout=res_opt.dropout,
                                            clip_dim=512,
                                            shared_codebook=vq_opt.shared_codebook,
                                            cond_drop_prob=res_opt.cond_drop_prob,
                                            # codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
                                            share_weight=res_opt.share_weight,
                                            clip_version=clip_version,
                                            opt=res_opt)

    ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'),
                      map_location=opt.device)
    missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False)
    assert len(unexpected_keys) == 0
    assert all([k.startswith('clip_model.') for k in missing_keys])
    print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!')
    return res_transformer

if __name__ == '__main__':
    parser = EvalT2MOptions()
    opt = parser.parse()
    fixseed(opt.seed)

    opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
    torch.autograd.set_detect_anomaly(True)

    dim_pose = 251 if opt.dataset_name == 'kit' else 263

    # out_dir = pjoin(opt.check)
    root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
    model_dir = pjoin(root_dir, 'model')
    out_dir = pjoin(root_dir, 'eval')
    os.makedirs(out_dir, exist_ok=True)

    out_path = pjoin(out_dir, "%s.log"%opt.ext)

    f = open(pjoin(out_path), 'w')

    model_opt_path = pjoin(root_dir, 'opt.txt')
    model_opt = get_opt(model_opt_path, device=opt.device)
    clip_version = 'ViT-B/32'

    vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
    vq_opt = get_opt(vq_opt_path, device=opt.device)
    vq_model, vq_opt = load_vq_model(vq_opt)

    model_opt.num_tokens = vq_opt.nb_code
    model_opt.num_quantizers = vq_opt.num_quantizers
    model_opt.code_dim = vq_opt.code_dim

    res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
    res_opt = get_opt(res_opt_path, device=opt.device)
    res_model = load_res_model(res_opt)

    assert res_opt.vq_name == model_opt.vq_name

    dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if opt.dataset_name == 'kit' \
        else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'

    wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
    eval_wrapper = EvaluatorModelWrapper(wrapper_opt)

    ##### ---- Dataloader ---- #####
    opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22

    eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device)

    # model_dir = pjoin(opt.)
    for file in os.listdir(model_dir):
        if opt.which_epoch != "all" and opt.which_epoch not in file:
            continue
        print('loading checkpoint {}'.format(file))
        t2m_transformer = load_trans_model(model_opt, file)
        t2m_transformer.eval()
        vq_model.eval()
        res_model.eval()

        t2m_transformer.to(opt.device)
        vq_model.to(opt.device)
        res_model.to(opt.device)

        fid = []
        div = []
        top1 = []
        top2 = []
        top3 = []
        matching = []
        mm = []

        repeat_time = 20
        for i in range(repeat_time):
            with torch.no_grad():
                best_fid, best_div, Rprecision, best_matching, best_mm = \
                    eval_t2m.evaluation_mask_transformer_test_plus_res(eval_val_loader, vq_model, res_model, t2m_transformer,
                                                                       i, eval_wrapper=eval_wrapper,
                                                         time_steps=opt.time_steps, cond_scale=opt.cond_scale,
                                                         temperature=opt.temperature, topkr=opt.topkr,
                                                                       force_mask=opt.force_mask, cal_mm=True)
            fid.append(best_fid)
            div.append(best_div)
            top1.append(Rprecision[0])
            top2.append(Rprecision[1])
            top3.append(Rprecision[2])
            matching.append(best_matching)
            mm.append(best_mm)

        fid = np.array(fid)
        div = np.array(div)
        top1 = np.array(top1)
        top2 = np.array(top2)
        top3 = np.array(top3)
        matching = np.array(matching)
        mm = np.array(mm)

        print(f'{file} final result:')
        print(f'{file} final result:', file=f, flush=True)

        msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
                    f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
                    f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1) * 1.96 / np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2) * 1.96 / np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
                    f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching) * 1.96 / np.sqrt(repeat_time):.3f}\n" \
                    f"\tMultimodality:{np.mean(mm):.3f}, conf.{np.std(mm) * 1.96 / np.sqrt(repeat_time):.3f}\n\n"
        # logger.info(msg_final)
        print(msg_final)
        print(msg_final, file=f, flush=True)

    f.close()


# python eval_t2m_trans.py --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_vq --dataset_name t2m --gpu_id 3 --cond_scale 4 --time_steps 18 --temperature 1 --topkr 0.9 --gumbel_sample --ext cs4_ts18_tau1_topkr0.9_gs