vit-base-brain-mri / README.md
andrei-teodor's picture
Brain MRI fine tune run - 20 epochs.
ba1e468 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-brain-mri
    results: []

vit-base-brain-mri

This model is a fine-tuned version of google/vit-base-patch16-224 on the BrainMRI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0577
  • Accuracy: 0.5990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 72 0.9986 0.6098
1.098 2.0 144 0.8445 0.7003
0.7895 3.0 216 0.7318 0.7526
0.7895 4.0 288 0.6842 0.7474
0.6629 5.0 360 0.6328 0.7857
0.5966 6.0 432 0.5957 0.8101
0.5546 7.0 504 0.5646 0.8118
0.5546 8.0 576 0.5647 0.8049
0.5113 9.0 648 0.5340 0.8275
0.4882 10.0 720 0.5190 0.8328
0.4882 11.0 792 0.5197 0.8328
0.4789 12.0 864 0.5002 0.8258
0.4582 13.0 936 0.4957 0.8310
0.4426 14.0 1008 0.4821 0.8310
0.4426 15.0 1080 0.4706 0.8467
0.4328 16.0 1152 0.4821 0.8153
0.432 17.0 1224 0.4992 0.8275
0.432 18.0 1296 0.4799 0.8345
0.4196 19.0 1368 0.4838 0.8310
0.4287 20.0 1440 0.4598 0.8659

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1