vit-base-brain-mri / README.md
andrei-teodor's picture
Brain MRI 🧠 fine tune - 14 epochs.
1a0689c verified
|
raw
history blame
2.31 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-brain-mri
    results: []

vit-base-brain-mri

This model is a fine-tuned version of google/vit-base-patch16-224 on the BrainMRI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1297
  • Accuracy: 0.5685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Accuracy Validation Loss
No log 1.0 72 0.6289 0.9818
1.0744 2.0 144 0.6864 0.8287
0.7716 3.0 216 0.7160 0.7535
0.7716 4.0 288 0.7404 0.7140
0.6975 5.0 360 0.7491 0.7015
0.6651 6.0 432 0.7631 0.6839
0.6307 7.0 504 0.7700 0.6624
0.6307 8.0 576 0.7822 0.6363
0.5857 9.0 648 0.7822 0.6089
0.576 10.0 720 0.7770 0.6249
0.576 11.0 792 0.6184 0.7840
0.5733 12.0 864 0.6006 0.7944
0.5555 13.0 936 0.5898 0.8014
0.5481 14.0 1008 0.5857 0.8223

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1