File size: 15,597 Bytes
c72e80d 2d00549 9aea727 2d00549 c72e80d 2d00549 c72e80d 2d00549 c72e80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import logging
import os
import sys
from copy import copy
from pathlib import Path
from queue import Queue
from threading import Event
from typing import Optional
from sys import platform
from VAD.vad_handler import VADHandler
from arguments_classes.chat_tts_arguments import ChatTTSHandlerArguments
from arguments_classes.language_model_arguments import LanguageModelHandlerArguments
from arguments_classes.mlx_language_model_arguments import (
MLXLanguageModelHandlerArguments,
)
from arguments_classes.module_arguments import ModuleArguments
from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments
from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments
from arguments_classes.socket_receiver_arguments import SocketReceiverArguments
from arguments_classes.socket_sender_arguments import SocketSenderArguments
from arguments_classes.vad_arguments import VADHandlerArguments
from arguments_classes.whisper_stt_arguments import WhisperSTTHandlerArguments
from arguments_classes.melo_tts_arguments import MeloTTSHandlerArguments
import torch
import nltk
from rich.console import Console
from transformers import (
HfArgumentParser,
)
from utils.thread_manager import ThreadManager
# Ensure that the necessary NLTK resources are available
try:
nltk.data.find("tokenizers/punkt_tab")
except (LookupError, OSError):
nltk.download("punkt_tab")
try:
nltk.data.find("tokenizers/averaged_perceptron_tagger_eng")
except (LookupError, OSError):
nltk.download("averaged_perceptron_tagger_eng")
# caching allows ~50% compilation time reduction
# see https://docs.google.com/document/d/1y5CRfMLdwEoF1nTk9q8qEu1mgMUuUtvhklPKJ2emLU8/edit#heading=h.o2asbxsrp1ma
CURRENT_DIR = Path(__file__).resolve().parent
os.environ["TORCHINDUCTOR_CACHE_DIR"] = os.path.join(CURRENT_DIR, "tmp")
console = Console()
logging.getLogger("numba").setLevel(logging.WARNING) # quiet down numba logs
def rename_args(args, prefix):
"""
Rename arguments by removing the prefix and prepares the gen_kwargs.
"""
gen_kwargs = {}
for key in copy(args.__dict__):
if key.startswith(prefix):
value = args.__dict__.pop(key)
new_key = key[len(prefix) + 1 :] # Remove prefix and underscore
if new_key.startswith("gen_"):
gen_kwargs[new_key[4:]] = value # Remove 'gen_' and add to dict
else:
args.__dict__[new_key] = value
args.__dict__["gen_kwargs"] = gen_kwargs
def get_default_arguments(**kwargs):
default_args = [
ModuleArguments(),
SocketReceiverArguments(),
SocketSenderArguments(),
VADHandlerArguments(),
WhisperSTTHandlerArguments(),
ParaformerSTTHandlerArguments(),
LanguageModelHandlerArguments(),
MLXLanguageModelHandlerArguments(),
ParlerTTSHandlerArguments(),
MeloTTSHandlerArguments(),
ChatTTSHandlerArguments(),
]
# Update arguments with provided kwargs
for arg_obj in default_args:
for key, value in kwargs.items():
if hasattr(arg_obj, key):
setattr(arg_obj, key, value)
return tuple(default_args)
def parse_arguments():
parser = HfArgumentParser(
(
ModuleArguments,
SocketReceiverArguments,
SocketSenderArguments,
VADHandlerArguments,
WhisperSTTHandlerArguments,
ParaformerSTTHandlerArguments,
LanguageModelHandlerArguments,
MLXLanguageModelHandlerArguments,
ParlerTTSHandlerArguments,
MeloTTSHandlerArguments,
ChatTTSHandlerArguments,
)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# Parse configurations from a JSON file if specified
return parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
# Parse arguments from command line if no JSON file is provided
return parser.parse_args_into_dataclasses()
def setup_logger(log_level):
global logger
logging.basicConfig(
level=log_level.upper(),
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# torch compile logs
if log_level == "debug":
torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)
def optimal_mac_settings(mac_optimal_settings: Optional[str], *handler_kwargs):
if mac_optimal_settings:
for kwargs in handler_kwargs:
if hasattr(kwargs, "device"):
kwargs.device = "mps"
if hasattr(kwargs, "mode"):
kwargs.mode = "local"
if hasattr(kwargs, "stt"):
kwargs.stt = "whisper-mlx"
if hasattr(kwargs, "llm"):
kwargs.llm = "mlx-lm"
if hasattr(kwargs, "tts"):
kwargs.tts = "melo"
def check_mac_settings(module_kwargs):
if platform == "darwin":
if module_kwargs.device == "cuda":
raise ValueError(
"Cannot use CUDA on macOS. Please set the device to 'cpu' or 'mps'."
)
if module_kwargs.llm != "mlx-lm":
logger.warning(
"For macOS users, it is recommended to use mlx-lm. You can activate it by passing --llm mlx-lm."
)
if module_kwargs.tts != "melo":
logger.warning(
"If you experiences issues generating the voice, considering setting the tts to melo."
)
def overwrite_device_argument(common_device: Optional[str], *handler_kwargs):
if common_device:
for kwargs in handler_kwargs:
if hasattr(kwargs, "lm_device"):
kwargs.lm_device = common_device
if hasattr(kwargs, "tts_device"):
kwargs.tts_device = common_device
if hasattr(kwargs, "stt_device"):
kwargs.stt_device = common_device
if hasattr(kwargs, "paraformer_stt_device"):
kwargs.paraformer_stt_device = common_device
def prepare_module_args(module_kwargs, *handler_kwargs):
optimal_mac_settings(module_kwargs.local_mac_optimal_settings, module_kwargs)
if platform == "darwin":
check_mac_settings(module_kwargs)
overwrite_device_argument(module_kwargs.device, *handler_kwargs)
def prepare_all_args(
module_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
):
prepare_module_args(
module_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
)
rename_args(whisper_stt_handler_kwargs, "stt")
rename_args(paraformer_stt_handler_kwargs, "paraformer_stt")
rename_args(language_model_handler_kwargs, "lm")
rename_args(mlx_language_model_handler_kwargs, "mlx_lm")
rename_args(parler_tts_handler_kwargs, "tts")
rename_args(melo_tts_handler_kwargs, "melo")
rename_args(chat_tts_handler_kwargs, "chat_tts")
def initialize_queues_and_events():
return {
"stop_event": Event(),
"should_listen": Event(),
"recv_audio_chunks_queue": Queue(),
"send_audio_chunks_queue": Queue(),
"spoken_prompt_queue": Queue(),
"text_prompt_queue": Queue(),
"lm_response_queue": Queue(),
}
def build_pipeline(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
queues_and_events,
):
stop_event = queues_and_events["stop_event"]
should_listen = queues_and_events["should_listen"]
recv_audio_chunks_queue = queues_and_events["recv_audio_chunks_queue"]
send_audio_chunks_queue = queues_and_events["send_audio_chunks_queue"]
spoken_prompt_queue = queues_and_events["spoken_prompt_queue"]
text_prompt_queue = queues_and_events["text_prompt_queue"]
lm_response_queue = queues_and_events["lm_response_queue"]
if module_kwargs.mode == "local":
from connections.local_audio_streamer import LocalAudioStreamer
local_audio_streamer = LocalAudioStreamer(
input_queue=recv_audio_chunks_queue, output_queue=send_audio_chunks_queue
)
comms_handlers = [local_audio_streamer]
should_listen.set()
elif module_kwargs.mode == "socket":
from connections.socket_receiver import SocketReceiver
from connections.socket_sender import SocketSender
comms_handlers = [
SocketReceiver(
stop_event,
recv_audio_chunks_queue,
should_listen,
host=socket_receiver_kwargs.recv_host,
port=socket_receiver_kwargs.recv_port,
chunk_size=socket_receiver_kwargs.chunk_size,
),
SocketSender(
stop_event,
send_audio_chunks_queue,
host=socket_sender_kwargs.send_host,
port=socket_sender_kwargs.send_port,
),
]
else:
comms_handlers = []
should_listen.set()
vad = VADHandler(
stop_event,
queue_in=recv_audio_chunks_queue,
queue_out=spoken_prompt_queue,
setup_args=(should_listen,),
setup_kwargs=vars(vad_handler_kwargs),
)
stt = get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs)
lm = get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs)
tts = get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs)
return ThreadManager([*comms_handlers, vad, stt, lm, tts])
def get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs):
if module_kwargs.stt == "whisper":
from STT.whisper_stt_handler import WhisperSTTHandler
return WhisperSTTHandler(
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(whisper_stt_handler_kwargs),
)
elif module_kwargs.stt == "whisper-mlx":
from STT.lightning_whisper_mlx_handler import LightningWhisperSTTHandler
return LightningWhisperSTTHandler(
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(whisper_stt_handler_kwargs),
)
elif module_kwargs.stt == "paraformer":
from STT.paraformer_handler import ParaformerSTTHandler
return ParaformerSTTHandler(
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(paraformer_stt_handler_kwargs),
)
else:
raise ValueError("The STT should be either whisper, whisper-mlx, or paraformer.")
def get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs):
if module_kwargs.llm == "transformers":
from LLM.language_model import LanguageModelHandler
return LanguageModelHandler(
stop_event,
queue_in=text_prompt_queue,
queue_out=lm_response_queue,
setup_kwargs=vars(language_model_handler_kwargs),
)
elif module_kwargs.llm == "mlx-lm":
from LLM.mlx_language_model import MLXLanguageModelHandler
return MLXLanguageModelHandler(
stop_event,
queue_in=text_prompt_queue,
queue_out=lm_response_queue,
setup_kwargs=vars(mlx_language_model_handler_kwargs),
)
else:
raise ValueError("The LLM should be either transformers or mlx-lm")
def get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs):
if module_kwargs.tts == "parler":
from TTS.parler_handler import ParlerTTSHandler
return ParlerTTSHandler(
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(parler_tts_handler_kwargs),
)
elif module_kwargs.tts == "melo":
try:
from TTS.melo_handler import MeloTTSHandler
except RuntimeError as e:
logger.error(
"Error importing MeloTTSHandler. You might need to run: python -m unidic download"
)
raise e
return MeloTTSHandler(
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(melo_tts_handler_kwargs),
)
elif module_kwargs.tts == "chatTTS":
try:
from TTS.chatTTS_handler import ChatTTSHandler
except RuntimeError as e:
logger.error("Error importing ChatTTSHandler")
raise e
return ChatTTSHandler(
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(chat_tts_handler_kwargs),
)
else:
raise ValueError("The TTS should be either parler, melo or chatTTS")
def main():
(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
) = parse_arguments()
setup_logger(module_kwargs.log_level)
prepare_all_args(
module_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
)
queues_and_events = initialize_queues_and_events()
pipeline_manager = build_pipeline(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
queues_and_events,
)
try:
pipeline_manager.start()
except KeyboardInterrupt:
pipeline_manager.stop()
if __name__ == "__main__":
main() |