anaghasavit's picture
update model card README.md
1beddef
|
raw
history blame
2.69 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-pt22k-ft22k-finetunedt
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-pt22k-ft22k-finetunedt
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7369 | 1.0 | 25 | 0.0425 | 0.9972 |
| 0.007 | 2.0 | 50 | 0.0005 | 1.0 |
| 0.0041 | 3.0 | 75 | 0.0003 | 1.0 |
| 0.0011 | 4.0 | 100 | 0.0002 | 1.0 |
| 0.0008 | 5.0 | 125 | 0.0001 | 1.0 |
| 0.0055 | 6.0 | 150 | 0.0002 | 1.0 |
| 0.0007 | 7.0 | 175 | 0.0001 | 1.0 |
| 0.0047 | 8.0 | 200 | 0.0001 | 1.0 |
| 0.0005 | 9.0 | 225 | 0.0001 | 1.0 |
| 0.006 | 10.0 | 250 | 0.0001 | 1.0 |
| 0.0065 | 11.0 | 275 | 0.0001 | 1.0 |
| 0.0023 | 12.0 | 300 | 0.0001 | 1.0 |
| 0.0003 | 13.0 | 325 | 0.0001 | 1.0 |
| 0.0011 | 14.0 | 350 | 0.0000 | 1.0 |
| 0.0003 | 15.0 | 375 | 0.0000 | 1.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2