|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: beit-base-patch16-224-pt22k-ft22k-finetunedt |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: train |
|
split: train |
|
args: train |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# beit-base-patch16-224-pt22k-ft22k-finetunedt |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.7369 | 1.0 | 25 | 0.0425 | 0.9972 | |
|
| 0.007 | 2.0 | 50 | 0.0005 | 1.0 | |
|
| 0.0041 | 3.0 | 75 | 0.0003 | 1.0 | |
|
| 0.0011 | 4.0 | 100 | 0.0002 | 1.0 | |
|
| 0.0008 | 5.0 | 125 | 0.0001 | 1.0 | |
|
| 0.0055 | 6.0 | 150 | 0.0002 | 1.0 | |
|
| 0.0007 | 7.0 | 175 | 0.0001 | 1.0 | |
|
| 0.0047 | 8.0 | 200 | 0.0001 | 1.0 | |
|
| 0.0005 | 9.0 | 225 | 0.0001 | 1.0 | |
|
| 0.006 | 10.0 | 250 | 0.0001 | 1.0 | |
|
| 0.0065 | 11.0 | 275 | 0.0001 | 1.0 | |
|
| 0.0023 | 12.0 | 300 | 0.0001 | 1.0 | |
|
| 0.0003 | 13.0 | 325 | 0.0001 | 1.0 | |
|
| 0.0011 | 14.0 | 350 | 0.0000 | 1.0 | |
|
| 0.0003 | 15.0 | 375 | 0.0000 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|