File size: 1,756 Bytes
7e9287a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: MoritzLaurer/deberta-v3-large-zeroshot-v2.0
tags:
- generated_from_trainer
datasets:
- swag
metrics:
- accuracy
model-index:
- name: fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-swag
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine-tuned-MoritzLaurer-deberta-v3-large-zeroshot-v2.0-swag

This model is a fine-tuned version of [MoritzLaurer/deberta-v3-large-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0) on the swag dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5968
- Accuracy: 0.9142

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4957        | 1.0   | 4597  | 0.2545          | 0.9058   |
| 0.2768        | 2.0   | 9194  | 0.2780          | 0.9089   |
| 0.1333        | 3.0   | 13791 | 0.4016          | 0.9126   |
| 0.0599        | 4.0   | 18388 | 0.5968          | 0.9142   |


### Framework versions

- Transformers 4.41.2
- Pytorch 1.11.0
- Datasets 2.19.1
- Tokenizers 0.19.1