ammarnasr commited on
Commit
d4f23f9
1 Parent(s): bd546f3

Create modeling_codegen.py

Browse files
Files changed (1) hide show
  1. modeling_codegen.py +747 -0
modeling_codegen.py ADDED
@@ -0,0 +1,747 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch CodeGen model."""
16
+
17
+ from typing import Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.utils.checkpoint
21
+ from torch import nn
22
+ from torch.nn import CrossEntropyLoss
23
+
24
+ from transformers.activations import ACT2FN
25
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
28
+ from .configuration_codegen import CodeGenConfig
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ _CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono"
34
+ _CONFIG_FOR_DOC = "CodeGenConfig"
35
+ _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
36
+
37
+
38
+ CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [
39
+ "Salesforce/codegen-350M-nl",
40
+ "Salesforce/codegen-350M-multi",
41
+ "Salesforce/codegen-350M-mono",
42
+ "Salesforce/codegen-2B-nl",
43
+ "Salesforce/codegen-2B-multi",
44
+ "Salesforce/codegen-2B-mono",
45
+ "Salesforce/codegen-6B-nl",
46
+ "Salesforce/codegen-6B-multi",
47
+ "Salesforce/codegen-6B-mono",
48
+ "Salesforce/codegen-16B-nl",
49
+ "Salesforce/codegen-16B-multi",
50
+ "Salesforce/codegen-16B-mono",
51
+ # See all CodeGen models at https://huggingface.co/models?filter=codegen
52
+ ]
53
+
54
+
55
+ # Copied from transformers.models.gptj.modeling_gptj.fixed_pos_embedding
56
+ def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
57
+ dim = x.shape[-1]
58
+ if seq_len is None:
59
+ seq_len = x.shape[seq_dim]
60
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
61
+ sinusoid_inp = (
62
+ torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
63
+ )
64
+ return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
65
+
66
+
67
+ # Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
68
+ def rotate_every_two(x):
69
+ x1 = x[:, :, :, ::2]
70
+ x2 = x[:, :, :, 1::2]
71
+ x = torch.stack((-x2, x1), dim=-1)
72
+ return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
73
+
74
+
75
+ # Copied from transformers.models.gptj.modeling_gptj.duplicate_interleave
76
+ def duplicate_interleave(m):
77
+ """
78
+ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
79
+ """
80
+ dim0 = m.shape[0]
81
+ m = m.view(-1, 1) # flatten the matrix
82
+ m = m.repeat(1, 2) # repeat all elements into the 2nd dimension
83
+ m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy
84
+ return m
85
+
86
+
87
+ # Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
88
+ def apply_rotary_pos_emb(x, sincos, offset=0):
89
+ sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos)
90
+ # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
91
+ return (x * cos) + (rotate_every_two(x) * sin)
92
+
93
+
94
+ class CodeGenAttention(nn.Module):
95
+ def __init__(self, config):
96
+ super().__init__()
97
+
98
+ max_positions = config.max_position_embeddings
99
+ self.register_buffer(
100
+ "causal_mask",
101
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
102
+ 1, 1, max_positions, max_positions
103
+ ),
104
+ )
105
+
106
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
107
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
108
+
109
+ self.embed_dim = config.hidden_size
110
+ self.num_attention_heads = config.num_attention_heads
111
+ self.head_dim = self.embed_dim // self.num_attention_heads
112
+ if self.head_dim * self.num_attention_heads != self.embed_dim:
113
+ raise ValueError(
114
+ f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
115
+ f" `num_attention_heads`: {self.num_attention_heads})."
116
+ )
117
+ self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
118
+ self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
119
+
120
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
121
+ self.rotary_dim = None
122
+ if config.rotary_dim is not None:
123
+ self.rotary_dim = config.rotary_dim
124
+
125
+ def _split_heads(self, x, n_head, dim_head, mp_num):
126
+ reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
127
+ reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
128
+ return reshaped
129
+
130
+ def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
131
+ """
132
+ Merges attn_head_size dim and num_attn_heads dim into n_ctx
133
+ """
134
+ if len(tensor.shape) == 5:
135
+ tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
136
+ elif len(tensor.shape) == 4:
137
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
138
+ else:
139
+ raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
140
+ new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
141
+ return tensor.view(new_shape)
142
+
143
+ def _attn(
144
+ self,
145
+ query,
146
+ key,
147
+ value,
148
+ attention_mask=None,
149
+ head_mask=None,
150
+ ):
151
+
152
+ # compute causal mask from causal mask buffer
153
+ query_length, key_length = query.size(-2), key.size(-2)
154
+ causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
155
+
156
+ # Keep the attention weights computation in fp32 to avoid overflow issues
157
+ query = query.to(torch.float32)
158
+ key = key.to(torch.float32)
159
+
160
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
161
+
162
+ attn_weights = attn_weights / self.scale_attn
163
+ mask_value = torch.finfo(attn_weights.dtype).min
164
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
165
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
166
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
167
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
168
+
169
+ if attention_mask is not None:
170
+ # Apply the attention mask
171
+ attn_weights = attn_weights + attention_mask
172
+
173
+ attn_weights = nn.Softmax(dim=-1)(attn_weights)
174
+ attn_weights = attn_weights.to(value.dtype)
175
+ attn_weights = self.attn_dropout(attn_weights)
176
+
177
+ # Mask heads if we want to
178
+ if head_mask is not None:
179
+ attn_weights = attn_weights * head_mask
180
+
181
+ attn_output = torch.matmul(attn_weights, value)
182
+
183
+ return attn_output, attn_weights
184
+
185
+ def forward(
186
+ self,
187
+ hidden_states: Optional[torch.FloatTensor],
188
+ attention_mask: Optional[torch.FloatTensor] = None,
189
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
190
+ head_mask: Optional[torch.FloatTensor] = None,
191
+ use_cache: Optional[bool] = False,
192
+ output_attentions: Optional[bool] = False,
193
+ ) -> Union[
194
+ Tuple[torch.Tensor, Tuple[torch.Tensor]],
195
+ Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
196
+ ]:
197
+
198
+ qkv = self.qkv_proj(hidden_states)
199
+
200
+ # TPU-v3
201
+ mp_num = 8
202
+ qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
203
+
204
+ local_dim = self.head_dim * self.num_attention_heads // mp_num
205
+ query, value, key = torch.split(qkv_split, local_dim, dim=-1)
206
+ query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
207
+ key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
208
+
209
+ value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
210
+ value = value.permute(0, 2, 1, 3)
211
+
212
+ seq_len = key.shape[1]
213
+ offset = 0
214
+
215
+ if layer_past is not None:
216
+ offset = layer_past[0].shape[-2]
217
+ seq_len += offset
218
+
219
+ if self.rotary_dim is not None:
220
+ k_rot = key[:, :, :, : self.rotary_dim]
221
+ k_pass = key[:, :, :, self.rotary_dim :]
222
+
223
+ q_rot = query[:, :, :, : self.rotary_dim]
224
+ q_pass = query[:, :, :, self.rotary_dim :]
225
+
226
+ sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
227
+ k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
228
+ q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
229
+
230
+ key = torch.cat([k_rot, k_pass], dim=-1)
231
+ query = torch.cat([q_rot, q_pass], dim=-1)
232
+ else:
233
+ sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
234
+ key = apply_rotary_pos_emb(key, sincos, offset=offset)
235
+ query = apply_rotary_pos_emb(query, sincos, offset=offset)
236
+
237
+ key = key.permute(0, 2, 1, 3)
238
+ query = query.permute(0, 2, 1, 3)
239
+
240
+ if layer_past is not None:
241
+ past_key = layer_past[0]
242
+ past_value = layer_past[1]
243
+ key = torch.cat((past_key, key), dim=-2)
244
+ value = torch.cat((past_value, value), dim=-2)
245
+
246
+ if use_cache is True:
247
+ present = (key, value)
248
+ else:
249
+ present = None
250
+
251
+ # compute self-attention: V x Softmax(QK^T)
252
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
253
+
254
+ attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
255
+ attn_output = self.out_proj(attn_output)
256
+ attn_output = self.resid_dropout(attn_output)
257
+
258
+ outputs = (attn_output, present)
259
+ if output_attentions:
260
+ outputs += (attn_weights,)
261
+
262
+ return outputs # a, present, (attentions)
263
+
264
+
265
+ # Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen
266
+ class CodeGenMLP(nn.Module):
267
+ def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
268
+ super().__init__()
269
+ embed_dim = config.n_embd
270
+
271
+ self.fc_in = nn.Linear(embed_dim, intermediate_size)
272
+ self.fc_out = nn.Linear(intermediate_size, embed_dim)
273
+
274
+ self.act = ACT2FN[config.activation_function]
275
+ self.dropout = nn.Dropout(config.resid_pdrop)
276
+
277
+ def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
278
+ hidden_states = self.fc_in(hidden_states)
279
+ hidden_states = self.act(hidden_states)
280
+ hidden_states = self.fc_out(hidden_states)
281
+ hidden_states = self.dropout(hidden_states)
282
+ return hidden_states
283
+
284
+
285
+ # Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen
286
+ class CodeGenBlock(nn.Module):
287
+ def __init__(self, config):
288
+ super().__init__()
289
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
290
+ self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
291
+ self.attn = CodeGenAttention(config)
292
+ self.mlp = CodeGenMLP(inner_dim, config)
293
+
294
+ def forward(
295
+ self,
296
+ hidden_states: Optional[torch.FloatTensor],
297
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
298
+ attention_mask: Optional[torch.FloatTensor] = None,
299
+ head_mask: Optional[torch.FloatTensor] = None,
300
+ use_cache: Optional[bool] = False,
301
+ output_attentions: Optional[bool] = False,
302
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
303
+ residual = hidden_states
304
+ hidden_states = self.ln_1(hidden_states)
305
+ attn_outputs = self.attn(
306
+ hidden_states,
307
+ layer_past=layer_past,
308
+ attention_mask=attention_mask,
309
+ head_mask=head_mask,
310
+ use_cache=use_cache,
311
+ output_attentions=output_attentions,
312
+ )
313
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
314
+ outputs = attn_outputs[1:]
315
+
316
+ feed_forward_hidden_states = self.mlp(hidden_states)
317
+ hidden_states = attn_output + feed_forward_hidden_states + residual
318
+
319
+ if use_cache:
320
+ outputs = (hidden_states,) + outputs
321
+ else:
322
+ outputs = (hidden_states,) + outputs[1:]
323
+
324
+ return outputs # hidden_states, present, (attentions)
325
+
326
+
327
+ class CodeGenPreTrainedModel(PreTrainedModel):
328
+ """
329
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
330
+ models.
331
+ """
332
+
333
+ config_class = CodeGenConfig
334
+ base_model_prefix = "transformer"
335
+ supports_gradient_checkpointing = True
336
+ _no_split_modules = ["CodeGenBlock"]
337
+
338
+ def __init__(self, *inputs, **kwargs):
339
+ super().__init__(*inputs, **kwargs)
340
+
341
+ def _init_weights(self, module):
342
+ """Initialize the weights."""
343
+ if isinstance(module, (nn.Linear,)):
344
+ # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
345
+ # cf https://github.com/pytorch/pytorch/pull/5617
346
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
347
+ if module.bias is not None:
348
+ module.bias.data.zero_()
349
+ elif isinstance(module, nn.Embedding):
350
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
351
+ if module.padding_idx is not None:
352
+ module.weight.data[module.padding_idx].zero_()
353
+ elif isinstance(module, nn.LayerNorm):
354
+ module.bias.data.zero_()
355
+ module.weight.data.fill_(1.0)
356
+
357
+ def _set_gradient_checkpointing(self, module, value=False):
358
+ if isinstance(module, CodeGenModel):
359
+ module.gradient_checkpointing = value
360
+
361
+
362
+ CODEGEN_START_DOCSTRING = r"""
363
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
364
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
365
+ behavior.
366
+
367
+ Parameters:
368
+ config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model.
369
+ Initializing with a config file does not load the weights associated with the model, only the
370
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
371
+ """
372
+
373
+ CODEGEN_INPUTS_DOCSTRING = r"""
374
+ Args:
375
+ input_ids (`torch.LongTensor` of shape `({0})`):
376
+ Indices of input sequence tokens in the vocabulary.
377
+
378
+ Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
379
+ [`PreTrainedTokenizer.__call__`] for details.
380
+
381
+ [What are input IDs?](../glossary#input-ids)
382
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
383
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
384
+
385
+ - 1 for tokens that are **not masked**,
386
+ - 0 for tokens that are **masked**.
387
+
388
+ [What are attention masks?](../glossary#attention-mask)
389
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
390
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
391
+ 1]`:
392
+
393
+ - 0 corresponds to a *sentence A* token,
394
+ - 1 corresponds to a *sentence B* token.
395
+
396
+ [What are token type IDs?](../glossary#token-type-ids)
397
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
398
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
399
+ config.n_positions - 1]`.
400
+
401
+ [What are position IDs?](../glossary#position-ids)
402
+ head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
403
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
404
+
405
+ - 1 indicates the head is **not masked**,
406
+ - 0 indicates the head is **masked**.
407
+
408
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
409
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
410
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
411
+ model's internal embedding lookup matrix.
412
+ output_attentions (`bool`, *optional*):
413
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
414
+ tensors for more detail.
415
+ output_hidden_states (`bool`, *optional*):
416
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
417
+ more detail.
418
+ return_dict (`bool`, *optional*):
419
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
420
+ """
421
+
422
+
423
+ @add_start_docstrings(
424
+ "The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.",
425
+ CODEGEN_START_DOCSTRING,
426
+ )
427
+ class CodeGenModel(CodeGenPreTrainedModel):
428
+ def __init__(self, config):
429
+ super().__init__(config)
430
+
431
+ self.embed_dim = config.n_embd
432
+ self.vocab_size = config.vocab_size
433
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
434
+ self.drop = nn.Dropout(config.embd_pdrop)
435
+ self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)])
436
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
437
+ self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
438
+
439
+ self.gradient_checkpointing = False
440
+
441
+ # Initialize weights and apply final processing
442
+ self.post_init()
443
+
444
+ def get_input_embeddings(self):
445
+ return self.wte
446
+
447
+ def set_input_embeddings(self, new_embeddings):
448
+ self.wte = new_embeddings
449
+
450
+ @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
451
+ @add_code_sample_docstrings(
452
+ processor_class=_TOKENIZER_FOR_DOC,
453
+ checkpoint=_CHECKPOINT_FOR_DOC,
454
+ output_type=BaseModelOutputWithPast,
455
+ config_class=_CONFIG_FOR_DOC,
456
+ )
457
+ def forward(
458
+ self,
459
+ input_ids: Optional[torch.LongTensor] = None,
460
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
461
+ attention_mask: Optional[torch.FloatTensor] = None,
462
+ token_type_ids: Optional[torch.LongTensor] = None,
463
+ position_ids: Optional[torch.LongTensor] = None,
464
+ head_mask: Optional[torch.FloatTensor] = None,
465
+ inputs_embeds: Optional[torch.FloatTensor] = None,
466
+ use_cache: Optional[bool] = None,
467
+ output_attentions: Optional[bool] = None,
468
+ output_hidden_states: Optional[bool] = None,
469
+ return_dict: Optional[bool] = None,
470
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
471
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
472
+ output_hidden_states = (
473
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
474
+ )
475
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
476
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
477
+
478
+ if input_ids is not None and inputs_embeds is not None:
479
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
480
+ elif input_ids is not None:
481
+ input_shape = input_ids.size()
482
+ input_ids = input_ids.view(-1, input_shape[-1])
483
+ batch_size = input_ids.shape[0]
484
+ elif inputs_embeds is not None:
485
+ input_shape = inputs_embeds.size()[:-1]
486
+ batch_size = inputs_embeds.shape[0]
487
+ else:
488
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
489
+
490
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
491
+
492
+ if token_type_ids is not None:
493
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
494
+
495
+ if position_ids is not None:
496
+ position_ids = position_ids.view(-1, input_shape[-1])
497
+
498
+ if past_key_values is None:
499
+ past_length = 0
500
+ past_key_values = tuple([None] * len(self.h))
501
+ else:
502
+ past_length = past_key_values[0][0].size(-2)
503
+
504
+ if position_ids is None:
505
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
506
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
507
+
508
+ # Attention mask.
509
+ if attention_mask is not None:
510
+ if batch_size <= 0:
511
+ raise ValueError("batch_size has to be defined and > 0")
512
+ attention_mask = attention_mask.view(batch_size, -1)
513
+ # We create a 3D attention mask from a 2D tensor mask.
514
+ # Sizes are [batch_size, 1, 1, to_seq_length]
515
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
516
+ # this attention mask is more simple than the triangular masking of causal attention
517
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
518
+ attention_mask = attention_mask[:, None, None, :]
519
+
520
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
521
+ # masked positions, this operation will create a tensor which is 0.0 for
522
+ # positions we want to attend and the dtype's smallest value for masked positions.
523
+ # Since we are adding it to the raw scores before the softmax, this is
524
+ # effectively the same as removing these entirely.
525
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
526
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
527
+
528
+ # Prepare head mask if needed
529
+ # 1.0 in head_mask indicate we keep the head
530
+ # attention_probs has shape bsz x num_attention_heads x N x N
531
+ # head_mask has shape n_layer x batch x num_attention_heads x N x N
532
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
533
+
534
+ if inputs_embeds is None:
535
+ inputs_embeds = self.wte(input_ids)
536
+
537
+ hidden_states = inputs_embeds
538
+
539
+ if token_type_ids is not None:
540
+ token_type_embeds = self.wte(token_type_ids)
541
+ hidden_states = hidden_states + token_type_embeds
542
+
543
+ hidden_states = self.drop(hidden_states)
544
+
545
+ output_shape = input_shape + (hidden_states.size(-1),)
546
+
547
+ presents = () if use_cache else None
548
+ all_self_attentions = () if output_attentions else None
549
+ all_hidden_states = () if output_hidden_states else None
550
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
551
+
552
+ if output_hidden_states:
553
+ all_hidden_states = all_hidden_states + (hidden_states,)
554
+
555
+ if self.gradient_checkpointing and self.training:
556
+
557
+ if use_cache:
558
+ logger.warning(
559
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
560
+ "`use_cache=False`..."
561
+ )
562
+ use_cache = False
563
+
564
+ def create_custom_forward(module):
565
+ def custom_forward(*inputs):
566
+ # None for past_key_value
567
+ return module(*inputs, use_cache, output_attentions)
568
+
569
+ return custom_forward
570
+
571
+ outputs = torch.utils.checkpoint.checkpoint(
572
+ create_custom_forward(block),
573
+ hidden_states,
574
+ None,
575
+ attention_mask,
576
+ head_mask[i],
577
+ )
578
+ else:
579
+ outputs = block(
580
+ hidden_states,
581
+ layer_past=layer_past,
582
+ attention_mask=attention_mask,
583
+ head_mask=head_mask[i],
584
+ use_cache=use_cache,
585
+ output_attentions=output_attentions,
586
+ )
587
+
588
+ hidden_states = outputs[0]
589
+ if use_cache is True:
590
+ presents = presents + (outputs[1],)
591
+
592
+ if output_attentions:
593
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
594
+
595
+ hidden_states = self.ln_f(hidden_states)
596
+
597
+ hidden_states = hidden_states.view(output_shape)
598
+ # Add last hidden state
599
+ if output_hidden_states:
600
+ all_hidden_states = all_hidden_states + (hidden_states,)
601
+
602
+ if not return_dict:
603
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
604
+
605
+ return BaseModelOutputWithPast(
606
+ last_hidden_state=hidden_states,
607
+ past_key_values=presents,
608
+ hidden_states=all_hidden_states,
609
+ attentions=all_self_attentions,
610
+ )
611
+
612
+
613
+ @add_start_docstrings(
614
+ """
615
+ The CodeGen Model transformer with a language modeling head on top.
616
+ """,
617
+ CODEGEN_START_DOCSTRING,
618
+ )
619
+ class CodeGenForCausalLM(CodeGenPreTrainedModel):
620
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
621
+
622
+ def __init__(self, config):
623
+ super().__init__(config)
624
+ self.transformer = CodeGenModel(config)
625
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
626
+
627
+ # Initialize weights and apply final processing
628
+ self.post_init()
629
+
630
+ def get_output_embeddings(self):
631
+ return self.lm_head
632
+
633
+ def set_output_embeddings(self, new_embeddings):
634
+ self.lm_head = new_embeddings
635
+
636
+ def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
637
+ token_type_ids = kwargs.get("token_type_ids", None)
638
+ # only last token for inputs_ids if past is defined in kwargs
639
+ if past:
640
+ input_ids = input_ids[:, -1].unsqueeze(-1)
641
+ if token_type_ids is not None:
642
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
643
+
644
+ attention_mask = kwargs.get("attention_mask", None)
645
+ position_ids = kwargs.get("position_ids", None)
646
+
647
+ if attention_mask is not None and position_ids is None:
648
+ # create position_ids on the fly for batch generation
649
+ position_ids = attention_mask.long().cumsum(-1) - 1
650
+ position_ids.masked_fill_(attention_mask == 0, 1)
651
+ if past:
652
+ position_ids = position_ids[:, -1].unsqueeze(-1)
653
+ else:
654
+ position_ids = None
655
+ return {
656
+ "input_ids": input_ids,
657
+ "past_key_values": past,
658
+ "use_cache": kwargs.get("use_cache"),
659
+ "position_ids": position_ids,
660
+ "attention_mask": attention_mask,
661
+ "token_type_ids": token_type_ids,
662
+ }
663
+
664
+ @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
665
+ @add_code_sample_docstrings(
666
+ processor_class=_TOKENIZER_FOR_DOC,
667
+ checkpoint=_CHECKPOINT_FOR_DOC,
668
+ output_type=CausalLMOutputWithPast,
669
+ config_class=_CONFIG_FOR_DOC,
670
+ )
671
+ def forward(
672
+ self,
673
+ input_ids: Optional[torch.LongTensor] = None,
674
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
675
+ attention_mask: Optional[torch.FloatTensor] = None,
676
+ token_type_ids: Optional[torch.LongTensor] = None,
677
+ position_ids: Optional[torch.LongTensor] = None,
678
+ head_mask: Optional[torch.FloatTensor] = None,
679
+ inputs_embeds: Optional[torch.FloatTensor] = None,
680
+ labels: Optional[torch.LongTensor] = None,
681
+ use_cache: Optional[bool] = None,
682
+ output_attentions: Optional[bool] = None,
683
+ output_hidden_states: Optional[bool] = None,
684
+ return_dict: Optional[bool] = None,
685
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
686
+ r"""
687
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
688
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
689
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
690
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
691
+ """
692
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
693
+
694
+ transformer_outputs = self.transformer(
695
+ input_ids,
696
+ past_key_values=past_key_values,
697
+ attention_mask=attention_mask,
698
+ token_type_ids=token_type_ids,
699
+ position_ids=position_ids,
700
+ head_mask=head_mask,
701
+ inputs_embeds=inputs_embeds,
702
+ use_cache=use_cache,
703
+ output_attentions=output_attentions,
704
+ output_hidden_states=output_hidden_states,
705
+ return_dict=return_dict,
706
+ )
707
+ hidden_states = transformer_outputs[0]
708
+
709
+ # make sure sampling in fp16 works correctly and
710
+ # compute loss in fp32 to match with mesh-tf version
711
+ # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
712
+ lm_logits = self.lm_head(hidden_states).to(torch.float32)
713
+
714
+ loss = None
715
+ if labels is not None:
716
+ # Shift so that tokens < n predict n
717
+ shift_logits = lm_logits[..., :-1, :].contiguous()
718
+ shift_labels = labels[..., 1:].contiguous()
719
+ # Flatten the tokens
720
+ loss_fct = CrossEntropyLoss()
721
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
722
+
723
+ loss = loss.to(hidden_states.dtype)
724
+
725
+ if not return_dict:
726
+ output = (lm_logits,) + transformer_outputs[1:]
727
+ return ((loss,) + output) if loss is not None else output
728
+
729
+ return CausalLMOutputWithPast(
730
+ loss=loss,
731
+ logits=lm_logits,
732
+ past_key_values=transformer_outputs.past_key_values,
733
+ hidden_states=transformer_outputs.hidden_states,
734
+ attentions=transformer_outputs.attentions,
735
+ )
736
+
737
+ @staticmethod
738
+ def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
739
+ """
740
+ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
741
+ [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
742
+ beam_idx at every generation step.
743
+ """
744
+ return tuple(
745
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
746
+ for layer_past in past
747
+ )