metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
model-index:
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9591516103692066
- name: Precision
type: precision
value: 0.9627515459909033
swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1210
- Accuracy: 0.9592
- F1 Score: 0.9600
- Precision: 0.9628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 100
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 400
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision |
---|---|---|---|---|---|---|
1.2882 | 0.99 | 19 | 0.5469 | 0.7962 | 0.7863 | 0.8077 |
0.3491 | 1.97 | 38 | 0.3030 | 0.8861 | 0.8878 | 0.8981 |
0.1791 | 2.96 | 57 | 0.2077 | 0.9211 | 0.9229 | 0.9307 |
0.122 | 4.0 | 77 | 0.2007 | 0.9254 | 0.9272 | 0.9369 |
0.0671 | 4.99 | 96 | 0.2073 | 0.9269 | 0.9294 | 0.9401 |
0.0474 | 5.97 | 115 | 0.1384 | 0.9482 | 0.9494 | 0.9547 |
0.032 | 6.96 | 134 | 0.1683 | 0.9430 | 0.9447 | 0.9511 |
0.0225 | 8.0 | 154 | 0.1101 | 0.9650 | 0.9657 | 0.9671 |
0.0193 | 8.99 | 173 | 0.1372 | 0.9533 | 0.9544 | 0.9585 |
0.0193 | 9.87 | 190 | 0.1210 | 0.9592 | 0.9600 | 0.9628 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3