|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9265375854214123 |
|
- name: Precision |
|
type: precision |
|
value: 0.9269521372101541 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final |
|
|
|
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1925 |
|
- Accuracy: 0.9265 |
|
- F1 Score: 0.9252 |
|
- Precision: 0.9270 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:| |
|
| 1.2212 | 0.96 | 20 | 1.1407 | 0.6429 | 0.6225 | 0.6601 | |
|
| 0.565 | 1.98 | 41 | 0.5162 | 0.8326 | 0.8311 | 0.8428 | |
|
| 0.3245 | 2.99 | 62 | 0.3265 | 0.8804 | 0.8784 | 0.8843 | |
|
| 0.2618 | 4.0 | 83 | 0.2713 | 0.9066 | 0.9054 | 0.9105 | |
|
| 0.2164 | 4.96 | 103 | 0.2812 | 0.8946 | 0.8929 | 0.8994 | |
|
| 0.1814 | 5.98 | 124 | 0.2411 | 0.9060 | 0.9043 | 0.9091 | |
|
| 0.1481 | 6.99 | 145 | 0.2345 | 0.9100 | 0.9084 | 0.9130 | |
|
| 0.1468 | 8.0 | 166 | 0.2340 | 0.9072 | 0.9055 | 0.9108 | |
|
| 0.1336 | 8.96 | 186 | 0.1925 | 0.9265 | 0.9252 | 0.9270 | |
|
| 0.133 | 9.64 | 200 | 0.2021 | 0.9220 | 0.9207 | 0.9235 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|