File size: 12,918 Bytes
b6c882b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# -*- coding: utf-8 -*-
"""ML Final Project
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Aof3bcIIqSmvsh0cux6wZ5NPk1wY-l3D
### install dependencies
"""
!gdown "1W3-WEplVSztLR3lvkyYdiKZGMT4y0cNi&confirm=t"
#!unzip IMDB.zip
#!pip install mlflow
"""# Content-based filtering
### import libraries
"""
import numpy as np
import pandas as pd
import mlflow as mf
#mf.log_artifacts({'rating':'/content/rating_small.csv', 'rating':'/content/rating_small.csv', 'movies':'/content/movies_metadata.csv','keywords':'/content/keywords.csv', 'credits':'/content/credits.csv'})
"""### read data from file"""
keywords = pd.read_csv('/content/IMDB/keywords.csv')
keywords
rating = pd.read_csv('/content/IMDB/ratings_small.csv')
rating
credits = pd.read_csv('/content/IMDB/credits.csv')
credits
metadata = pd.read_csv('/content/IMDB/movies_metadata.csv')
metadata
"""keep only related columns from released movies:"""
metadata = metadata[metadata['status'] == 'Released']
cols = np.array(['adult', 'belongs_to_collection', 'genres', 'id', 'original_language', 'title', 'production_countries', 'production_companies', 'video'])
metadata = metadata[cols]
metadata.iloc[1]
def find_collection(x):
if x == '':
return ''
return eval(str(x))['name']
metadata['belongs_to_collection'] = metadata['belongs_to_collection'].fillna('')
metadata['belongs_to_collection'] = metadata['belongs_to_collection'].apply(find_collection)
metadata.iloc[1]
def find_names(x):
if x == '':
return ''
genre_arr = eval(str(x))
return ','.join(i['name'] for i in eval(str(x)))
metadata['genres'] = metadata['genres'].fillna('')
metadata['genres']=metadata['genres'].apply(find_names)
metadata['production_countries']=metadata['production_countries'].apply(find_names)
metadata['production_companies']=metadata['production_companies'].apply(find_names)
credits['cast'] = credits['cast'].apply(find_names)
metadata.iloc[1]
keywords['keywords'] = keywords['keywords'].apply(find_names)
metadata['id'] = metadata['id'].astype(int)
metadata = pd.merge(metadata,keywords,how='inner',on='id')
metadata.iloc[1]
def to_int(x):
if x == 'True':
return 1
return 0
metadata['adult'].unique()
"""there are 3 values other than True or False in adult column. there are entered by mistake so we remove those rows."""
metadata = metadata[(metadata['adult'] == 'True') | (metadata['adult'] == 'False')]
metadata['adult'] = metadata['adult'].apply(to_int)
metadata['video'].unique()
"""removing nan values from dataset and replacing 'True' and 'False' with 1 and 0:"""
metadata = metadata[~metadata['video'].isna()]
metadata['video'] = metadata['video'].apply(to_int)
"""## Vectorize string features"""
metadata
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
def my_tok(text):
return text.split(",")
def vectorize_string(col_name, feature_name, limit=None, df=metadata):
vectorizer = CountVectorizer(tokenizer=my_tok, max_features=limit, min_df=2)
X = vectorizer.fit_transform(df[col_name])
vec_cols = vectorizer.get_feature_names_out()
vec_data = X.toarray()
#vec_cols = np.char.add(feature_name+':', vec_cols)
vec_cols = feature_name+':'+vec_cols
return vec_data, vec_cols
def tfidf(col_name, feature_name, limit=None, df=metadata):
vectorizer = TfidfVectorizer(tokenizer=my_tok, max_features=limit, min_df=2)
X = vectorizer.fit_transform(df[col_name])
vec_cols = vectorizer.get_feature_names_out()
vec_data = X.toarray()
#vec_cols = np.char.add(feature_name+':', vec_cols)
vec_cols = feature_name+':'+vec_cols
return vec_data, vec_cols
genre_data, genre_cols = vectorize_string('genres', 'genre')
genre_cols
companies_data, companies_cols = vectorize_string('production_companies', 'company', 100)
companies_cols
countries_data, countries_cols = vectorize_string('production_countries', 'country')
countries_cols
collection_data, collection_cols = vectorize_string('belongs_to_collection', 'collection')
collection_cols
metadata['original_language']= metadata['original_language'].fillna('')
lang_data, lang_cols = vectorize_string('original_language', 'lang')
lang_cols
collection_cols.shape
keyword_data, keyword_cols = tfidf('keywords', 'keyword', 1000)
keyword_cols
credits.drop(columns=['crew'], inplace=True)
credit_data, credit_cols = vectorize_string('cast','cast', 1000, df=credits)
credit_cols
metadata = pd.concat([metadata[['title','id','adult','video']],
pd.DataFrame(genre_data, columns=genre_cols),
pd.DataFrame(countries_data, columns=countries_cols),
pd.DataFrame(collection_data, columns=collection_cols),
pd.DataFrame(keyword_data, columns=keyword_cols),
pd.DataFrame(companies_data, columns=companies_cols),
pd.DataFrame(lang_data, columns=lang_cols)], axis=1)
credits[credit_cols] = credit_data
metadata = pd.merge(metadata, credits, how='inner', on='id')
metadata
#metadata.drop(['production_countries', 'genres', 'belongs_to_collection', 'keywords', 'production_companies', 'original_language'], axis=1, inplace=True)
"""list of all numerical features(everything except id and title)"""
feature_cols = np.concatenate((np.array(['adult', 'video']), genre_cols,countries_cols,collection_cols,keyword_cols,companies_cols,lang_cols,credit_cols))
feature_cols
#metadata[feature_cols] = metadata[feature_cols].astype('int8')
del genre_data,countries_data,collection_data,keyword_data,companies_data,lang_data,credit_data
del genre_cols,countries_cols,collection_cols,keyword_cols,companies_cols,lang_cols,credit_cols
feature_cols.shape
metadata
def split_dataframe(df, holdout_fraction=0.1):
test = df.sample(frac=holdout_fraction, replace=False)
train = df[~df.index.isin(test.index)]
return train, test
train, test = split_dataframe(metadata)
allIds = metadata['id']
number_of_batches = 4
batches = np.array_split(train, number_of_batches)
mf.log_param('number of batches', number_of_batches)
del metadata
del train
"""## Algorithm
"""
batches[0]
from sklearn.metrics.pairwise import cosine_similarity
"""`content_based_recommmeder` returns a list of movie ids based on it's input. the input should be a dataframe which has `movieId`, `rating` columns(like `ratings_small.csv` but without `userId`)"""
number_of_batches =1
def content_based_recommender_movie(movieId):
print("movie title is:", metadata[metadata['id']==movieId])
sim_mat= cosine_similarity(metadata[feature_cols])
return sim_mat
#content_based_recommender_movie(272)
batches[1].describe()
from sklearn.metrics.pairwise import euclidean_distances as dist
def content_based_recommender(user, df, k=10, movieIds=allIds):
user_movies = pd.merge(user,df,how='inner',left_on='movieId',right_on='id')
user_movies[feature_cols] = user_movies[feature_cols].multiply(user_movies['rating'], axis="index")
mean_user_movies = user_movies[feature_cols].mean(axis=0)
sim_mat = cosine_similarity(df[feature_cols][df.id.isin(movieIds)], mean_user_movies[feature_cols].values.reshape(1,-1))
temp_data = {'id':df['id'][df.id.isin(movieIds)], 'title':df['title'][df.id.isin(movieIds)], 'sim':sim_mat.flatten()}
return pd.DataFrame(temp_data)
def content_based_all_batches(user, k=10, movieIds=allIds):
ans = content_based_recommender(user, batches[0], k, movieIds)
for i in range(1,number_of_batches):
ans.append(content_based_recommender(user, batches[i], k, movieIds))
return ans.sort_values(by='sim', ascending=False)
content_based_k = 10
mf.log_param('content based k', content_based_k)
#xx = content_based_recommender(rating[rating['userId'] == 1], batches[1], content_based_k)
xx = content_based_all_batches(rating[rating['userId'] == 1], content_based_k)
xx.shape
"""# Collaborative Filtering
### import libraries
"""
import numpy as np
import pandas as pd
from sklearn.utils.extmath import randomized_svd
"""### explore datasets"""
rating = pd.read_csv('/content/IMDB/ratings_small.csv')
rating.head()
rating.shape
links_small = pd.read_csv('/content/IMDB/links_small.csv')
links_small.head()
credits = pd.read_csv('/content/IMDB/credits.csv')
credits.head()
movie = pd.read_csv('/content/IMDB/movies_metadata.csv')
movie.head()
movie = movie.rename(columns={'id': 'movieId'})
movie.shape
movie.head()
"""### data preprocessing
There are three rows entered by mistake, so we remove that row.
"""
movie = movie[(movie['movieId']!='1997-08-20') & (movie['movieId']!='2012-09-29') & (movie['movieId']!='2014-01-01')]
def find_names(x):
if x == '':
return ''
genre_arr = eval(str(x))
return ','.join(i['name'] for i in eval(str(x)))
movie['genres'] = movie['genres'].fillna('')
movie['genres']=movie['genres'].apply(find_names)
movie.movieId = movie.movieId.astype("uint64")
"""only keep rating for movies with metadata in movie dataset"""
new_rating = pd.merge(rating, movie, how='inner', on=["movieId"])
new_rating = new_rating[["userId", "movieId", "rating"]]
movie.head()
new_rating.head()
train, test = split_dataframe(new_rating)
"""### matrix factorization"""
inter_mat_df = rating.pivot(index = 'userId', columns ='movieId', values = 'rating').fillna(0)
inter_mat_df
inter_mat = inter_mat_df.to_numpy()
ratings_mean = np.mean(inter_mat, axis = 1)
inter_mat_normal = inter_mat - ratings_mean.reshape(-1, 1)
inter_mat_normal
"""We use singular value decomposition for matrix factorization"""
svd_U, svd_sigma, svd_V = randomized_svd(inter_mat_normal,
n_components=15,
n_iter=5,
random_state=47)
"""This function gives the diagonal form"""
svd_sigma = np.diag(svd_sigma)
"""Making predictions"""
rating_weights = np.dot(np.dot(svd_U, svd_sigma), svd_V) + ratings_mean.reshape(-1, 1)
weights_df = pd.DataFrame(rating_weights, columns = inter_mat_df.columns)
weights_df.head()
"""making recommendations"""
def recommend_top_k(preds_df, ratings_df, movie, userId, k=10):
user_row = userId-1
sorted_user_predictions = preds_df.iloc[user_row].sort_values(ascending=False)
user_data = ratings_df[ratings_df.userId == (userId)]
user_rated = user_data.merge(movie, how = 'left', left_on = 'movieId', right_on = 'movieId'). \
sort_values(['rating'], ascending=False)
user_preds = movie.merge(pd.DataFrame(sorted_user_predictions).reset_index(), how = 'left',
on = 'movieId').rename(columns = {user_row: 'prediction'}). \
sort_values('prediction', ascending = False). \
iloc[:k, :]
return user_rated, user_preds
collaborative_k = 100
user_rated, user_preds = recommend_top_k(weights_df, new_rating, movie, 220, collaborative_k)
mf.log_param('collaborative k', collaborative_k)
user_preds.head()
user_rated.head()
user_rated[["title", "genres"]].head(10)
user_preds[["title", "genres"]].head(10)
"""# Ensemble Model"""
def ensemble(userId, k=10):
user_rated, user_preds = recommend_top_k(weights_df, new_rating, movie, userId, k*k)
content_based_result = content_based_all_batches(rating[rating['userId'] == userId], k=k, movieIds=user_preds['movieId'])
return content_based_result[['id','title']]
ensemble_k=10
mf.log_param('ensemble k', ensemble_k)
ensemble(220, ensemble_k)
"""# Evaluation"""
df_res = user_preds[["movieId", "prediction"]]. \
merge(user_rated[["movieId", "rating"]], how = 'outer', on = 'movieId')
df_res.sort_values(by='prediction',ascending=False,inplace=True)
df_res
threshold = 2
df_res['prediction'] = df_res['prediction'] >= threshold
df_res['rating'] = df_res['rating'] >= threshold
df_res
def precision_at_k(df, k=10, y_test: str='rating', y_pred='prediction'):
dfK = df.head(k)
sum_df = dfK[y_pred].sum()
true_pred = dfK[dfK[y_pred] & dfK[y_test]].shape[0]
if sum_df > 0:
return true_pred/sum_df
else:
return None
def recall_at_k(df, k=10, y_test='rating', y_pred='prediction'):
dfK = df.head(k)
sum_df = df[y_test].sum()
true_pred = dfK[dfK[y_pred] & dfK[y_test]].shape[0]
if sum_df > 0:
return true_pred/sum_df
else:
return None
prec_at_k = precision_at_k(df_res, 100, y_test='rating', y_pred='prediction')
rec_at_k = recall_at_k(df_res, 100, y_test='rating', y_pred='prediction')
print("precision@k: ", prec_at_k)
print("recall@k: ", rec_at_k)
mf.log_metric('recall', rec_at_k)
mf.log_metric('precision', prec_at_k)
"""# MLOps"""
def updata_batch(new_batch):
number_of_batches = number_of_batches+1
batches = batches.append(new_batch)
mf.log_param('number of batches', number_of_batches)
|