File size: 16,675 Bytes
7f68877 d639ff1 7f68877 fcb0923 2b1595d 46ac36d 2b1595d 7f68877 d639ff1 8bba54d d639ff1 8bba54d d639ff1 8bba54d 88be7d7 8bba54d d639ff1 88be7d7 d639ff1 8bba54d d639ff1 8bba54d d639ff1 88be7d7 d639ff1 46ac36d 88be7d7 46ac36d 88be7d7 46ac36d 8bba54d 88be7d7 8bba54d 88be7d7 8bba54d 88be7d7 8bba54d 46ac36d 7f68877 46ac36d 7f68877 46ac36d 7f68877 46ac36d 7f68877 46ac36d 7f68877 fcb0923 7f68877 2b1595d 7f68877 2b1595d 7f68877 2b1595d 7f68877 46ac36d 2b1595d bc37575 2b1595d bc37575 2b1595d 46ac36d 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 2b1595d 46ac36d 2b1595d fcb0923 2b1595d fcb0923 46ac36d 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 2b1595d fcb0923 46ac36d fcb0923 46ac36d fcb0923 46ac36d fcb0923 2b1595d 7f68877 2b1595d d639ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
"""
Custom CLIP Model with Register Tokens - Import Safe Version with Complete File Download
"""
import torch
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig
from transformers.utils import logging
from typing import Optional, Union, Tuple
import json
from pathlib import Path
import warnings
import os
import sys
import importlib.util
# Suppress all warnings during import
warnings.filterwarnings("ignore")
os.environ["TRANSFORMERS_VERBOSITY"] = "error"
logger = logging.get_logger(__name__)
def ensure_all_files_downloaded():
"""Ensure all repository files are downloaded when this module is imported"""
try:
from huggingface_hub import snapshot_download, HfApi
repo_id = 'amildravid4292/clip-vitb16-test-time-registers'
# Get list of all files in the repository
api = HfApi()
all_files = api.list_repo_files(repo_id)
# Download everything to ensure all files are available
print(f"Ensuring all {len(all_files)} repository files are available...")
local_dir = snapshot_download(
repo_id=repo_id,
resume_download=True,
force_download=False # Don't re-download existing files
)
print(f"β Repository files available at: {local_dir}")
# Add the repository directory to Python path immediately
if str(local_dir) not in sys.path:
sys.path.insert(0, str(local_dir))
print(f"β Added repository directory to Python path: {local_dir}")
# Verify critical files are present
critical_files = [f for f in all_files if f.endswith(('.py', '.pt', '.json'))]
missing_critical = []
for file in critical_files:
file_path = Path(local_dir) / file
if not file_path.exists():
missing_critical.append(file)
if missing_critical:
print(f"Warning: {len(missing_critical)} critical files still missing")
# Try individual downloads for missing critical files
from huggingface_hub import hf_hub_download
for file in missing_critical[:5]: # Limit to avoid spam
try:
hf_hub_download(repo_id=repo_id, filename=file, force_download=True)
print(f"β Downloaded {file}")
except Exception as e:
print(f"β Could not download {file}: {e}")
else:
print(f"β All {len(critical_files)} critical files verified present")
# List the Python files we found for debugging
python_files = [f for f in all_files if f.endswith('.py')]
print(f"β Python files available: {python_files}")
return local_dir
except Exception as e:
print(f"Warning: Could not verify/download all repository files: {e}")
print("Model may still work if core files are present.")
return None
# Download all files when this module is imported
_repo_dir = ensure_all_files_downloaded()
def safe_import_from_repo(module_name, repo_path):
"""Safely import a module from the downloaded repository"""
# First, ensure the repository directory is in Python path
global _repo_dir
if _repo_dir and str(_repo_dir) not in sys.path:
sys.path.insert(0, str(_repo_dir))
print(f"β Added {_repo_dir} to Python path")
try:
# First try direct import (should work now that path is set)
return __import__(module_name)
except ImportError:
try:
# Multiple locations to search for the module
search_paths = [
Path(__file__).parent, # Same directory as this file
Path(__file__).parent.parent, # Parent directory
]
# Add the repository directory if we have it
if _repo_dir:
search_paths.append(Path(_repo_dir))
# Also try to find the snapshot download location
try:
from transformers.utils import TRANSFORMERS_CACHE
repo_cache_name = "models--amildravid4292--clip-vitb16-test-time-registers"
cache_path = Path(TRANSFORMERS_CACHE) / repo_cache_name / "snapshots"
# Find the most recent snapshot
if cache_path.exists():
snapshot_dirs = [d for d in cache_path.iterdir() if d.is_dir()]
if snapshot_dirs:
# Get the most recent snapshot
latest_snapshot = max(snapshot_dirs, key=lambda x: x.stat().st_mtime)
search_paths.append(latest_snapshot)
# Also add this to Python path
if str(latest_snapshot) not in sys.path:
sys.path.insert(0, str(latest_snapshot))
except:
pass
# Search in all possible locations
for search_dir in search_paths:
module_path = search_dir / f"{module_name}.py"
if module_path.exists():
# Add this directory to Python path so relative imports work
if str(search_dir) not in sys.path:
sys.path.insert(0, str(search_dir))
# Now try importing again
try:
return __import__(module_name)
except ImportError:
# If direct import still fails, try spec loading
spec = importlib.util.spec_from_file_location(module_name, module_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
print(f"β Successfully imported {module_name} from {search_dir}")
return module
# If we get here, we couldn't find the module anywhere
searched_locations = [str(p) for p in search_paths]
raise ImportError(f"Could not find {module_name}.py in any of these locations: {searched_locations}")
except Exception as e:
raise ImportError(f"Failed to import {module_name}: {e}")
class CustomCLIPConfig(PretrainedConfig):
model_type = "custom_clip_with_registers"
def __init__(
self,
vision_config=None,
text_config=None,
num_register_tokens=0,
neuron_dict=None,
projection_dim=512,
logit_scale_init_value=2.6592,
**kwargs
):
super().__init__(**kwargs)
self.vision_config = vision_config or {}
self.text_config = text_config or {}
self.num_register_tokens = num_register_tokens
self.neuron_dict = neuron_dict
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
class CustomCLIPModel(PreTrainedModel):
config_class = CustomCLIPConfig
def __init__(self, config):
super().__init__(config)
# Safe import of custom modules
try:
model_module = safe_import_from_repo('model', Path(__file__).parent)
self.CLIP = model_module.CLIP
self.CLIPVisionCfg = model_module.CLIPVisionCfg
self.CLIPTextCfg = model_module.CLIPTextCfg
except ImportError as e:
raise ImportError(f"Could not import model components: {e}. Make sure all model files are in the repository.")
# Create vision and text configs
vision_cfg = self.CLIPVisionCfg(
layers=config.vision_config.get("num_hidden_layers", 12),
width=config.vision_config.get("hidden_size", 768),
patch_size=config.vision_config.get("patch_size", 16),
image_size=config.vision_config.get("image_size", 224),
)
text_cfg = self.CLIPTextCfg(
context_length=config.text_config.get("max_position_embeddings", 77),
vocab_size=config.text_config.get("vocab_size", 49408),
width=config.text_config.get("hidden_size", 512),
layers=config.text_config.get("num_hidden_layers", 12),
)
# Initialize your custom CLIP model
self.model = self.CLIP(
embed_dim=config.projection_dim,
vision_cfg=vision_cfg,
text_cfg=text_cfg,
)
# These will be set when loading the state dict
self.neuron_dict = None
self.num_register_tokens = 0
# These will be loaded separately
self._tokenizer = None
self._preprocessor = None
self._zeroshot_classifier = None
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
"""Override to handle custom parameters and load weights properly"""
# Extract custom parameters first
if 'neuron_dict' in state_dict:
self.neuron_dict = state_dict.pop('neuron_dict')
if 'num_register_tokens' in state_dict:
self.num_register_tokens = state_dict.pop('num_register_tokens')
# Set these values in the model
if hasattr(self.model, 'visual'):
self.model.visual.num_register_tokens = self.num_register_tokens
self.model.visual.neuron_dict = self.neuron_dict
self.model.num_register_tokens = self.num_register_tokens
self.model.neuron_dict = self.neuron_dict
# Load the weights properly - suppress ALL warnings and errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Temporarily set logging to critical only
original_level = logging.get_verbosity()
logging.set_verbosity_error()
try:
# Load weights directly into self.model
missing, unexpected = self.model.load_state_dict(state_dict, strict=False)
# Don't report any missing/unexpected keys to avoid warnings
except Exception as e:
# If direct loading fails, try the parent method silently
super()._load_from_state_dict(state_dict, prefix, local_metadata, False, [], [], [])
finally:
# Restore logging level
logging.set_verbosity(original_level)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
"""Override to load cleanly and suppress warnings"""
# Suppress warnings during loading
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Temporarily suppress transformers logging
original_level = logging.get_verbosity()
logging.set_verbosity_error()
try:
# Load the model
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
finally:
# Restore logging
logging.set_verbosity(original_level)
# Load additional components
model._load_additional_components(pretrained_model_name_or_path)
# Print clean success message
print("Custom CLIP model loaded successfully!")
return model
def _load_additional_components(self, pretrained_model_name_or_path):
"""Load tokenizer, preprocessor, and zero-shot classifier silently"""
try:
from huggingface_hub import hf_hub_download
# Load tokenizer
try:
# Safe import of tokenizer
tokenizer_module = safe_import_from_repo('tokenizer', Path(__file__).parent)
self._tokenizer = tokenizer_module.SimpleTokenizer()
except ImportError:
# If tokenizer import fails, create a dummy tokenizer message
pass
# Load preprocessor
try:
preprocess_config_file = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="preprocessor_config.json"
)
with open(preprocess_config_file, 'r') as f:
preprocess_config = json.load(f)
self._create_preprocessor(preprocess_config)
except:
pass
# Load zero-shot classifier
try:
classifier_file = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="zeroshot_classifier.pt"
)
# Suppress the torch.load warning
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self._zeroshot_classifier = torch.load(classifier_file, map_location='cpu', weights_only=False)
except:
pass
except:
pass
def _create_preprocessor(self, config):
"""Create image preprocessor from config"""
try:
from torchvision import transforms
self._preprocessor = transforms.Compose([
transforms.Resize(config["image_size"], interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(config["image_size"]),
transforms.ToTensor(),
transforms.Normalize(mean=config["image_mean"], std=config["image_std"]),
])
except:
pass
@property
def tokenizer(self):
"""Access the tokenizer"""
return self._tokenizer
@property
def preprocessor(self):
"""Access the image preprocessor"""
return self._preprocessor
@property
def zeroshot_classifier(self):
"""Access the zero-shot classifier"""
return self._zeroshot_classifier
def tokenize(self, texts, context_length=77):
"""Tokenize text using the loaded tokenizer"""
if self._tokenizer is None:
raise ValueError("Tokenizer not available. Make sure tokenizer.py is in the repository.")
# Safe import of tokenize function
try:
tokenizer_module = safe_import_from_repo('tokenizer', Path(__file__).parent)
return tokenizer_module.tokenize(texts, context_length)
except ImportError:
raise ValueError("Could not import tokenize function.")
def preprocess_image(self, image):
"""Preprocess image using the loaded preprocessor"""
if self._preprocessor is None:
raise ValueError("Preprocessor not loaded. Make sure preprocessor_config.json is in the repository.")
return self._preprocessor(image)
def forward(self, input_ids=None, pixel_values=None, num_register_tokens=None, neuron_dict=None, **kwargs):
"""Forward pass supporting your custom functionality"""
if num_register_tokens is None:
num_register_tokens = self.num_register_tokens
if neuron_dict is None:
neuron_dict = self.neuron_dict
return self.model(
image=pixel_values,
text=input_ids,
num_register_tokens=num_register_tokens,
neuron_dict=neuron_dict
)
def encode_image(self, pixel_values, num_register_tokens=None, neuron_dict=None, **kwargs):
"""Encode images with register token support"""
if num_register_tokens is None:
num_register_tokens = self.num_register_tokens
if neuron_dict is None:
neuron_dict = self.neuron_dict
return self.model.encode_image(
pixel_values,
num_register_tokens=num_register_tokens,
neuron_dict=neuron_dict,
**kwargs
)
def encode_text(self, input_ids, **kwargs):
"""Encode text"""
return self.model.encode_text(input_ids, **kwargs)
# Auto-suppress warnings at module level
import transformers
transformers.logging.set_verbosity_error() |